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a b s t r a c t

Structured-grid adaptive mesh refinement (SAMR) is an approach to mesh generation that supports
structured access to data and adaptive mesh refinement for discretized partial differential equations
(PDEs). Solution algorithms often require that an inverse of an operator be applied, a system of
algebraic equations must be solved, and this process is often the primary computational cost in an
application. SAMR is well suited to geometric multigrid solvers, which can be effective, but often
do not adapt well to complex geometry including material coefficients. Algebraic multigrid (AMG)
is more robust in the face of complex geometry, in both boundary conditions and internal material
interfaces. AMG requires a stored matrix linearization of the operator. We discuss an approach, and
an implementation in the Chombo block-structured AMR framework, for constructing composite grid
matrices from a SAMR hierarchy of grids for use in linear solvers in the PETSc numerical library. We
consider a case study with the Chombo-based BISICLES ice sheet modeling application.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Geometric multigrid (GMG) is popular in structured-grid
adaptive mesh refinement (SAMR) applications because coarse
grid generation is often natural and GMG can be very efficient.
Some problems, however, such as porous media flow with com-
plex embedded boundary boundary conditions [1], and ice sheet
modeling with a dynamic and strongly-varying material coeffi-
cient structure [2], can be challenging to solve with GMG. The
more flexible and robust algebraic multigrid (AMG) can be useful
in those cases [3]. Additionally, after SAMR blocks have been
coarsened, GMG is often no longer natural to apply and, again,
AMG can be useful. AMG, for all intents and purposes, requires an
explicit stored matrix and a composite grid where cells without
any degrees of freedom (i.e., ghost cells and cells that are fully
covered by refinement) are eliminated and their stencil values
are resolved appropriately. The resulting matrix, with only active
degrees of freedom, is a composite grid matrix. This paper de-
scribes a matrix construction methodology and implementation
for composite grid construction from a SAMR hierarchy of grids.
We use the PETSc library for the linear algebra and solvers [4], and
implement this method in the Chombo SAMR framework [5]. We
demonstrate an implementation of this method in the ice sheet
modeling application BISICLES [2].
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At a high level, constructing composite matrices from SAMR
grid hierarchies is the inverse of the operations required to con-
struct discretizations for the ghost cells employed by the appli-
cation of the operator in a SAMR method. Methods that use face
quadrature instead of ghost cells have similar demands. We focus
on ghost-cell methods herein. Fig. 1 (top left) shows a 2D, 5-point
stencil example of a SAMR mesh with the cell types used in our
algorithms.

Applying an operator in Chombo requires preparing several
types of ghost cells: process ghost cells with an ‘‘exchange" pro-
cess in distributed memory, boundary ghost cells with interpo-
lation from interior cells in the domain, coarse-fine ghost cells
with interpolation from coarse grid cells in the ghosted region
of fine grid domain, and fine-coarse interpolation for cells that
have been refined. These processes interpolate given data be-
tween genuine cells, or degrees of freedom, and dependent ghost
cell values. Constructing a matrix requires a reverse process of
interpolating non-genuine (ghost) cell stencil values to genuine
cell stencil values. Our approach is to decompose this process
into its components with a series of transformations of a minimal
amount of data required from the application operator — stencils
of the operator on a uniform, infinite grid. We have instantiated
some standard forms of these transformations in our matrix
construction object in Chombo, but the object is designed with
the understanding that future users would extend the object
with new methods, such as higher-order interpolation for bound-
ary conditions and new types of boundary conditions. To date,
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Fig. 1. Diagram of stencil transformations: generic 5-point stencil (top left); boundary ghost cell reference removed (top right); coarse-fine ghost cell reference
removed (bottom left); fine-coarse covered cell reference removed (bottom right).

two applications use this technology, Chombo-Crunch [1] and
BISICLES [2].

2. Methodology

Our approach requires that the developer of an operator pro-
vide a method that generates a stencil, assuming a uniform,
infinite grid, at an arbitrary point in the domain. This is the
minimal information needed to generate a matrix and would be
the whole matrix for the operator on a uniform grid without
boundary conditions. This method is called for each genuine cell
on each level. This stencil is a row of a sparse matrix. In general
these stencils contain non-genuine cells (columns that are not
in the matrix) that must be removed to generate a matrix with
only true degrees of freedom, which is a convenient form for
generic algebraic solvers, but not strictly necessary. Our method
iterates over all the levels and all of the genuine degrees of free-
dom on each level, and calls this user-provided stencil method.
Chombo provides some instantiations of some simple operators,
but in general this is application-specific and must be provided
by the user. These stencils can be aggregated into a rectangular
matrix, at least conceptually, with more columns than rows. The
extra columns are a result of fact that genuine-cell (row) stencils
reference non-genuine cells (columns) as well as genuine cells.

The philosophy of our approach is to require the user provide
the minimal information necessary to generate the matrix, short
of a higher-level PDE language to generate stencils (although one
could use such an approach in the user-provided function), and
then decompose the operations required to make a square matrix
linearization of the operator for use in generic algebraic solvers.
These operations or transformations remove stencil entries to
ghost cells and interpolate their values into new stencil entries
to genuine cells or, in some rare cases, other ghost cells that will
be removed by later transformations.

3. Example and details of methodology

For example, a standard five-point stencil of the 2D Laplacian
for cell i, with mesh spacing h, can be expressed as a list of tuples:{

⟨⟨i, i⟩,
4
h2 ⟩, ⟨⟨i, i + 1⟩, −

1
h2 ⟩, ⟨⟨i, i − 1⟩, −

1
h2 ⟩,

⟨⟨i + 1, i⟩, −
1
h2 ⟩, ⟨⟨i − 1, i⟩, −

1
h2 ⟩

}
.

The transformations of our method distribute the stencil values
(e.g., the −

1
h2

on any cells that are not genuine cells) to genuine

cells. One can express these transformations as matrix operations,
and implement them with sparse matrices. We do not use the
matrix approach in the implementation, however, it is useful for
defining the transformations.

There are three types of transformation: (1) Boundary ghost
cells (B), (2) coarse-fine ghost cells (C), and (3) fine-coarse cov-
ered cells (F1). In matrix notation, where these cell-level transfor-
mations are aggregated into matrices, given a rectangular input
matrix of the stencils A0, the output matrix can be computed
with A = F2A0BCF1. The F2 matrix just removes the covered
coarse cells and is included for completeness of the matrix form.
We iterate over cells and compute all the transformations on
each cell. This in effect fuses the loops of these matrix–matrix
products. Fig. 1 shows a diagram of these transformations on a
simplified three-level SAMR mesh for a five-point stencil.

The base class of this matrix construction object has virtual
function implementations of each of these transformations, op-
erating on one cell, which can be overridden if the user wished
to add custom implementations. This base class has only one
pure virtual function for the stencil construction (A0). Note, one
could imagine decomposing this stencil method further where
divergence and gradient operators are provided and, for instance,
the Laplacian could be implemented with a gradient operator
on the cell identity, generating a face-centered gradient field,
a material field could be applied on these faces to get fluxes,
and then a divergence operator could generate the Laplacian
stencil. The current implementation does not provide this level
of refinement in the base class, but could implement a derived
class with this approach.

3.1. Example of cell transformation for coarse-fine interface cell

Consider the stencil above, enriched with a level index l, and
dropping h for clarity (it is implied with the level on a regular
grid), and in 1D,

{⟨⟨⟨i⟩, l⟩, 2⟩, ⟨⟨⟨i − 1⟩, l⟩, −1⟩, ⟨⟨⟨i + 1⟩, l⟩, −1⟩} .

Assume the point ⟨⟨i + 1⟩, l⟩ is a ghost within the domain, a
coarse-fine interface cell, and it is interpolated to two cells j and
k, with interpolation weights α1 and α2 (α1 + α2 = 1.0), on the
next coarse level, then the transformed stencil would be of the
form,

{⟨⟨⟨i⟩, l⟩, 2⟩, ⟨⟨⟨i − 1⟩, l⟩, −1⟩, ⟨⟨⟨j⟩, l − 1⟩, −α1⟩,

⟨⟨⟨k⟩, l − 1⟩, −α2⟩} .
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Fig. 2. Class architecture of composite grid matrix class, showing application
code (orange), Chombo code (green), and PETSc library code (blue). (For inter-
pretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3.2. Architecture

Fig. 2 shows a diagram of the architecture of the matrix
construction object in Chombo. An application creates a class
of the operator, and provides it with any specialized data like
material parameters. The application calls a method to construct
and return a PETSc matrix. The application creates a PETSc solver
with the provided matrix, and solves the system. Utility methods
which take data in a vector of Chombo level data objects and
put them on a PETSc vector, and methods for the reverse of this
operation, are provided in the base class, along with stencil tools
useful in creating the stencil as a part of the stencil construction
method (MakeOpStencil). The base class and some derived classes
for specific operators are provided in the Chombo release.

3.3. Refluxing, preconditioning, and matrix-free solvers

The matrix that is constructed with the methods and code
described here is meant to be used as the preconditioner matrix
for the true operator. The true operator is usually implemented
with, or wrapped in, a PETSc shell matrix. PETSc solvers are
constructed with two matrices, the operator and preconditioner
matrix, for this reason. It is difficult to linearize the operator
exactly and so this shell matrix is usually required. Even the
simple operators developed to date are not consistent for two
reasons. First, we do not implement refluxing [6]. We simply
average the fine-grid covered cells to the coarse grid for the
stencil transformations on the coarser grid. While this method is
still second-order accurate, it leads to errors in the discretization
because flux is not conserved across this fine-coarse boundary.
Chombo’s finite-volume methods add a refluxing process to their
operators to balance this flux [5], but we have not implemented
this in our matrix construction object.

The second potential inconsistency is that we use the rela-
tively new high-order coarse-fine interpolation in Chombo [7],
while some Chombo operator implementations do not. This high-
order interpolation was critical to achieving second-order accu-
racy in uniform refinement of a base SAMR grid. The nature of
this high-order interpolation, which is described in the following
section, provides the precise data required for the transformation,
unlike simpler methods that are often composed of several steps,
which must each be addressed individually.

4. Coarse-fine interfaces

A critical component in the construction of these matrices
is the treatment of the coarse-fine ghost cells, or interpolants
for (ghost) cells in the problem domain that are not refined

Fig. 3. Stencils for ghost-cell interpolation. In this 2D example, there are two
levels, with a refinement ratio of 2, and the coarser level covers the whole
rectangular domain, with boundary indicated by hatching. The finer level has one
layer of ghost cells, which are shown with dotted outlines. The six shaded ghost
cells, two inside each of the coarse cells marked (a), (b), and (c), are interpolated
from stencils consisting of those and neighboring coarse cells marked with
circles. For each of the coarse cells (a), (b), and (c), there is a coarse-fine
interpolation transformation to the ghost cells within the coarse cell from the
coarse cells in the stencil. Note that every stencil includes coarse cells that are
covered by the finer level.

on the level of the stencil center cell. High (greater than 2nd)
order is required to maintain the second-order convergence of the
method. This section describes, for completeness, the approach
used in Chombo and utilized in the default coarse-fine ghost
cell transformation in the base class, following the presentation
in [7]. Ghost-cell values are interpolated from cells at the next
coarser level. The interpolation stencil for a particular ghost cell
consists of the coarser-level cell that contains it, together with
other, neighboring coarser-level cells, as shown in Fig. 3.

The stencil for the ghost cells within a particular coarse cell
is determined by whether that coarse cell is on the boundary or
is separated from the boundary by one cell. Modulo translation,
reflection, and permutation of axes, the three stencils shown
in Fig. 3 are all of the possibilities that can arise in 2D. Note
that every stencil includes coarse cells that are covered by the
finer level. The dashed lines in Fig. 3 mark the limit of coarse
cells that are used in stencils to interpolate to any of the fine
ghost cells, illustrating the required nesting radius of 3. In 2D,
each such stencil has 13 cells, or 12 if the coarse cell is near
the boundary, and transforms from values on the stencil cells to
the 10 coefficients of a bivariate polynomial of degree 3, using
a least-squares approximation with a conservation constraint.
This polynomial is then evaluated to find values for the ghost
cells contained within the coarse cell. The composition of the
two operations of finding the polynomial coefficients and then
evaluating the polynomial is a linear transformation from coarse-
cell values to ghost-cell values, and this transformation depends
only on the particular grids. The interpolation weights computed
with this least squares solve are used for the weights α in the
example in Section 3.1.

The size of the interpolation stencils determines a proper-
nesting condition on the grids: because stencils extend two coarse
cells in each dimension beyond each coarse cell containing ghost
cells, we require that for every pair of successive levels, there
be at least three cells at the coarser level beyond the finer-level
patches, except where the finer-level patches abut the boundary.

5. Example application: BISICLES

The BISICLES ice sheet model [2] solves a 2D nonlinear coupled
viscous tensor equation on an AMR hierarchy for the ice velocity
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Fig. 4. Convergence history of a typical real-world BISICLES application, to the Amundsen Sea Embayment glaciers, using GMG (left) and AMG (right) approaches.
Thick red and black lines show nonlinear residuals for GMG and AMG, respectively, thinner green and blue lines show linear-solver convergence.

Fig. 5. Problem setup for BISICLES Antarctic example: (a) initial computed Antarctic ice-velocity field (b) Mesh resolution distribution. The coarsest mesh is 8 km
and spans the entire domain. There are 4 levels of refinement, each a factor 2 finer, resolving down to 500 m resolution on the finest mesh.

field at the base of the ice u⃗b:

β2(ub)u⃗b+∇⃗·[hµ(ϵ̇2, T )(∇⃗+∇⃗
T )u⃗b−2µ(ϵ̇2, T )(∇⃗ ·u⃗b)] = −ρgh∇⃗s,

(1)

where β2 is the basal friction coefficient, h is ice thickness, g
is gravity, ρ is the ice density, and s is the vertical elevation of
the ice surface. The viscosity µ varies as an inverse power law
relationship with the strain rate,

µ(ϵ̇2, T ) = A(T )(ϵ̇2)
(1−n)

2 (2)

where ϵ̇2 is the strain rate invariant and A(T ) is the temperature-
dependence of ice viscosity. As a result, µ can vary over orders of
magnitude, while the nonlinearity tends to concentrate velocity
gradients (and thus changes in µ) into relatively narrow shear
bands. Standard geometric multigrid can struggle to represent the
resulting sharp coefficient gradients on coarse levels, slowing or
even preventing convergence. The nonlinear solver in BISICLES
is a hybrid of Picard and Newton. The solver starts with Picard
and when convergence of the nonlinear residual slows (or after
a specified number of iterations) switches to Newton. We use a
Jacobian-Free Newton–Krylov (JFNK) nonlinear solver [8] with the
boomeramg solver in the hypre library [9], which is supported by
PETSc.

As a demonstration of our approach, we first present a case
where the standard geometric multigrid approach fails. We then
follow with a demonstration of the AMG solver on a full-scale
problem.

The Amundsen Sea Embayment glaciers of the Antarctic Ice
Sheet present a typical BISICLES problem, with fast sliding ice
streams flowing into ice shelves. The basal drag coefficient β is

low or zero across much of the domain. Although the standard
geometric multigrid often works adequately in this region, real
world applications involve an optimization problem, where (1)
must be solved across a range of β(x, y) and µ(x, y). It is common
to find cases where the standard approach fails, or at least per-
forms poorly, but the AMG approach is more robust. Fig. 4 shows
the progress of the nonlinear solver for one such example: the
notable feature is that while the GMG linear solver works well
enough to reduce the residual of (1) by some orders of magnitude,
the AMG solver allows the problem to be solved to machine-
precision and with the growing-rate convergence expected of
Newton’s method.

To demonstrate the effectiveness of this approach on a full-
scale problem, we solve a benchmark problem similar to that pre-
sented in [10], advancing the Antarctic Ice Sheet for 6 timesteps,
entailing 6 nonlinear solves. A representative velocity field and
AMR mesh configuration are shown in Fig. 5(a). The resulting
solver convergence history is shown in Fig. 6, and demonstrates
the effectiveness of the composite-grid AMG approach, even on
a fairly complex AMR hierarchy with strongly varying material
coefficients.

6. Conclusion

We have outlined a process of building a composite matrix
linearization of a semi-structured adaptive mesh grid hierarchy
and described an instantiation of this approach in the Chombo
framework. The advanced high-order accurate fine-coarse cell
interpolation methods in Chombo proved to simplify this work
considerably. We have demonstrated the use of this approach for
use in nonlinear solvers with the PETSc numerical library in the
BISICLES ice sheet model.
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Fig. 6. Convergence history of a benchmark BISICLES AMR Antarctic run us-
ing the hypre solver (accessed through PETSc) over 8 timesteps, including 6
nonlinear multilevel viscous-tensor solves. Black lines show nonlinear residuals,
magenta lines show linear-solver convergence. Iteration number on x-axis is
the nonlinear iteration number. Each iteration for the linear solver is 0.1 on
this scale.
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