~ A
««| BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline on Manycore and
Accelerated Systems

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

mailto:SWWilliams@lbl.gov

S

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

&5 % U.S. DEPARTMENT OF

o sty \&)
«9s ENERGY
“"«ﬂ-wzsm"\‘”

Acknowledgements

= This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

» This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

= This research used resources of the Oak Ridge Leadership Facility at the Oak Ridge National

Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-000R22725.

"% U.S. DEPARTMENT OF

.2/ENERGY

{ZiTES %

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

* Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= A
s P L

BERKELEY LAB

Performance Models

= Many different components can contribute to kernel run time.

= Some are characteristics of the application, some are characteristics of
the machine, and some are both (memory access pattern + caches).

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI| Wait's.. Network Latency. ...

Performance Models

= Can't think about all these terms all the time for every application...

Computational _________ o ____

Complexity I #FP operations Flop/s !

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI| Wait's.. Network Latency. ...

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

T T T T T D mmmedim e Clm e T Roofline
i #FP operations | Model

' Cache data movement Cache GB/s
DRAM data movement DRAM GB/s,,
“PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap

... #MPI| Wait's.. Network Latency. ...

Williams et al, "Roofline: An Insightful Visual Performance Model For Multicore Architectures",
CACM, 2009. 7

L
O
S
-
7))

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MP| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. | ...

Culler, et al, "LogP: a practical model of parallel computation", CACM, 1996. 8

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
______________ Depth. OMP Overhead
" MP| Message Size Network Bandwidth "
' MPI Send:Wait ratio Network Gap

. #M.P.I...Wal.t.s Network Latency

e - - e Em S Em D O D S EE EE EE S EE R EE EE EE EE EE EE D EE R EE Em Em Em o e e

Alexandrov, et al, "LogGP: incorporating long messages into the LogP model - one step clos
towards a realistic model for parallel computation”, SPAA, 1995. 9

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s

LogcA~__| PCle data movement PCle bandwidth:
' Depth OMP Overhead

- MPI Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap

... #MPI| Wait's.. Network Latency. ...

Bin Altaf et al, "LogCA: A High-Level Performance Model for Hardware Accelerators”, ISCA,
2017. 10

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction to the
Roofline Model

Performance Models / Simulators

= Historically, many performance models and simulators tracked latencies
to predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

« Out-of-order execution (hardware discovers parallelism to hide latency)
 HW stream prefetching (hardware speculatively loads data)
« Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= Effective latency hiding has resulted in a shift from a latency-limited
computing regime to a throughput-limited computing regime

— A
12 rr/r>| "“|

BERKELEY LAB

Roofline Model

°
®
B
B
{l
®

& crd.lbl.gov (@] ﬁ g R

F7I, U3 DEPARTMENT OF

@)ENERGY

- ROOfIine MOdel IS d throughPUt- e[| COMPUTATIONAL RESEARCH

BERKELEY LAB

oriented performance model...

CRD 2 PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS
—

Home » Performance and Algorithms Research » Research » Roofline

Performance and Algorithms Research
° Augmented W|th Little’s LaW ap avce Roofline Performance Model

ALGORITHMS

 Tracks rates not times

RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
— * - Ragearch i y or p i Rather than simply using percent-of-peak estimates, the model can be used to
CO n C u rre n Cy — a e n Cy a n W I T assess the quality of attained performance by combining locality, i and different izati i into a single
performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
BeBOP limitations.
EDGAR
.] GRS Arithmetic Intensity
. I n d e e n d e n t Of I SA a n d a rC h Ite Ct u re a I I e S HPGMG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
Roofline total data movement (bytes). A BLAS-1 vector-vector increment (x[i+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
SciDAC /24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex

1 TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's
O S S O O e S e tC Previous Projects would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
’ , , LI B limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have

arithmetic intensity grow very quickly.

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
A A A

qQ
S

r N7 N T \

Google+

|
|8
Twitter

SpMV

BLAS1,2 Particle
ils (PDE: Methods
Stencils (| s) FFTs, Dense
Lattice Boltzmann Spectral Methods Linear Algebra
N Me(hodsj N L (BLAS3) ,
Y Y Y
o(1) O(log(N)) O(N)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

>

A
Jouppi et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit”, ISCA, 2017. 13 fm "'|
BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: " (GBIs)
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
/‘
#FP ops / Peak GFlop/s

Time = max<

_#Bytes / Peak GB/s

14

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: " (GBIs)
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
Time _ 1/ Peak GFlop/s
= max <
#FP ops _#Bytes | #FP ops / Peak GB/s

15

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite locality (reuse) and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assume: | &2
|dealized processor/caches DRAM
Cold start (data in DRAM) (data, GB)
~
#FP ops _ . _ Peak GFlop/s
Time _(#FP ops / #Bytes) * Peak GB/s

16

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

CPU

= However, finite locality (reuse) and compute, flopls)
bandwidth limit performance. | oRaM Banduitt
= Assume: | &2
« |dealized processor/caches DRAM
+ Cold start (data in DRAM) (data, GB)
/"
Peak GFlop/s
GFlop/s = min=<
_Al * Peak GB/s
Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)
17 il

BERKELEY LAB

(DRAM) Roofline

= Plot Roofline bound using
Arithmetic Intensity as the x-axis

* Log-log scale makes it easy to Peak Flop/s / |
doodle, extrapolate performance |
along Moore's Law, efc...

= Kernels with Al less than machine
balance are ultimately DRAM
bound (we’ll refine this later...)

Attainable Flop/s

18

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money "
* Unlikely to improve §
T
Q
O
<
= Consider STREAM Triad... E
#pragma omp parallel for
for(i=0;i<N;i++){
z[i] = X[i] + alpha*Y[i];
}
. _ 0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

« Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
- Al =0.083 flops per byte == Memory bound

— A
19 rr/r>| H

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

coefficient stencil...
« 7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point "
« Cache can filter all but 1 read and 1 write per point E—
Al =0.44 flops per byte == memory bound, z O‘b\% 7 Gflop/s <Al DRAM GB/s
but 5x the flop rate 'c.é :
#pragma omp parallel for E§ :
for(k=1;k<dim+1;k++){ e ' 7-00i
For(3o1.j<dimilsies] < | 7-point
for(i=1;i<dim+l;i++){ ! Stencill
int ijk = 1 + j*jStride + k*kStride; I
new[ijk] = -6.0%o1d[ijk] .
old[ijk-1] : >
old[ijk+1]
o1d[1’§'k—j5tr1de] 0.083 0.44
old[ijk+jstride] Arithmetic Intensity (Flop:Byte)

old[ijk-kstride]
old[ijk+kstride];

— A
2() ;::::ﬁm

BERKELEY LAB

General Guidelines

* |magine a mix of loop nests (or

applications) |
= Flop/s alone may not be useful for
understanding performance

Kernel (or apps)

21

General Guidelines

= \We can sort kernels (or apps) by
Al ...

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)

22

General Guidelines

= \We can sort kernels (or apps) by

Al ... [
= ... and compare performance Peak Flop/s
relative to machine capabillities 8
P
o
s
Z
23 il

BERKELEY LAB

General Guidelines

= Applications near the roofline are

making good use of |
computational resources Peak Flop/s
o Kernels can have low performance 2

(Gflop/s), but make good use of a =

machine =

)

o Kernels can have high performance S

(Gflop/s), but make poor use of a <

machine

24 oryf

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model:
Cache Effects

Hierarchical Roofline

= Real processors have multiple levels of
memaory
* Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)

 DDR (main memory)
« NVRAM (non-volatile memory)

= Applications can have locality in each
level
= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

= A
26 rr/r>| "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM) .. -% DDR Bound
= DDR AI*"BW <
. ... performance is bound by the < MICDRAM AI"BW
minimum

= A
27 Py

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure a bandwidth . Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... IS
DRAM)... 5

. ... performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

- A
28 r:}l "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... S MCDRAM bound
DRAM)... 5 MCDRAM AIBW <
. ... performance is bound by the <
minimum

- A
29 r:ml "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

Rooflines... |

= Measure a bandwidth Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... IS
DRAM)... s

- ... performance is bound by the < S bottioncok pulls
minimum performance below

DDR Roofline
Arithmetic Intensity (Flop:Byte

= A
30 rr/rml "“|

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model:
In-Core Effects

Data, Instruction, Thread-Level Parallelism...

= Modern CPUs use several techniques to increase per core Flop/s

Fused Multiply Add Vector Instructions Deep Pipelines
e W=XyY+2zisAacommon « Many HPC codes apply The hardware for a FMA
idiom iPNing” [algebpra the same operation to a IS substantial.
. A (e vector of elements - Breaking a single FMA
of o oS J Vendors provide vector up into several smaller
?&&0‘“ of co' NG Instructions that apply operations and pipelining
'(e“e \N\‘\‘ e a the same operation to 2, them allows vendors to
Q?\M*’ aga=MA) 4,8, 16 elements... increase GHz
. A /U~hains the x [0:7] *y [0:7] + z [0:7] « Little’s Law applies...
ultiply and add in a . Vector FPUs complete 8 need FP_Latency *
single pipeline so that it vector operations/cycle FP_bandwidth
can complete FMA/cycle iIndependent instructions

— A
32 r:>| ‘"'|

BERKELEY LAB

Data, Instruction, Thread-Level Parallelism...

If every instruction were an ADD
(instead of FMA), performance
would drop by 2x on KNL or 4x
on Haswell

Similarly, if one had no vector
iInstructions, performance would
drop by another 8x on KNL and
4x on Haswell

FP Divides can be even worse.

Lack of threading will reduce
performance by 64x on KNL.

33

Attainable Flop/s

Add-only/(No FMA)

Peak Flop/s

Ng\vectorization
\ ¥ 4

Poor vectorization
pulls performance
below DDR

Arithmetic Intens

Roofline

Superscalar vs. instruction mix

= Define in-core ceilings based on
instruction mix...

" e.q. Haswell Peak Flop/s 100% FP

* 4-issue superscalar
 Only 2 FP data paths

 Requires 50% of the instructions to be FP
to get peak performance

= e.g. KNL

e 2-ISSue superscalar
2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

= A
y Py

50% FP
25% FP

Attainable Flop/s

non-FP instructions
can sap instruction
issue bandwidth and
pull performance
below Rooflin

Arithmetic Intensity

BERKELEY LAB

~
]

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Node
Characterization

Node Characterization

Cori/ KNL

= “Marketing Numbers” can be

deceptive... o .

+ Pin BW vs. real bandwidth

. TurboMode / Underclock for AVX " en_[SUMMItDev 1 4GPUs

« compiler failings on high-Al loops. o oot Atthury
= | BL developed the Empirical

Roofline Toolkit (ERT)...

« Characterize CPU/GPU systems

 Peak Flop rates

« Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

https://crd.Ibl.gov/departments/computer-science/PAR/research/roofline/

= A
36 rr/rml "“|

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Application
Characterization

Measuring Al

= To characterize application execution with Roofline we need...
o Time
o Flops (=> flop’s / time)
o Data movement between each level of memory (=> Flop’s / GB’s)

= \We can look at the full application...

o Coarse grained, 30-min average
o Misses many details and bottlenecks

= ... orwe can look at individual loop nests

o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.

"
: b
rrrrrrr ‘ |

BERKELEY LAB

Measuring Data Movement

Manual Counting Perf. Counters Cache Simulation

» Gothru each loop nestand = Read counter before/after = Build a full cache simulator
estimate how many bytes v Applies to full hierarchy (L2, driven by memory
will be moved DRAM. addresses

= Use a mental model of v Accurate v Applies to full hierarchy and
caches | /' Low overhead (<%) == can multicore |

v" Works best for simple loops run full MPI applications v" Can detect load imbalance

that stream from DRAM

(stencils, FFTs, spare, ...) v Can detect load imbalance ¥ ﬁtﬁ”}gtﬁiaa%lgitwn to
X NJ/A for complex caches X Requires privileged access P P
: X Ignores prefetchers
X Not scalable X Requires manual .
instrumentation (+overhead) X >10xoverhead (limited to
or full-app characterization short runs / single node)

— A
39 rr/r>| "“|

BERKELEY LAB

Measuring Flop’s

Manual Counting Perf. Counters Binary Instrumentation
» Gothrueachloopnestand = Read counter before/after = Automated inspection of
count the number of FP v Accurate assembly at run time
operations v Low overhead (<%) == can ¥ Can count instructions by
v" Works best for deterministic run full MPI applications class/type
y loop bounczs byt v Can detect load imbalance ¥ FMA-, VL-, and mask-aware
or parameterize by the X Requires privileged access ¥ Can detect load imbalance
number of iterations | v/ Can include effects f
(recorded at run time) X Requires manual an [helude Srects rom
X Not scalable instrumentation (+overhead) non-FP instructions
or full-app characterization @ v° Automated application to
X Broken counters = garbage multiple loop nests
X May not differentiate FMA X >10x overhead (limited to
from add short runs / single node)

"
: b
rrrrrrr ‘ |

X No insight into special
pipelines 40

BERKELEY LAB

LIKWID

= LIKWID provides easy to use wrappers for measuring performance

counters...

Works on NERSC production systems

Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
Minimal overhead (<1%)

Scalable in distributed memory (MPI-friendly)

Fast, high-level characterization
No timing breakdowns
Suffers from Garbage-in/Garbage Out (e.g. broken Haswell FP counters)

X X X X X X X

https://qgithub.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugqging-tools/likwid

- A
4 Py

BERKELEY LAB

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

* Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)
-bound, invest into

v Computes FLOPS and Al for each o AEMETY RO, Invest
funCtiOn (CARM) W & T2z B @ O StartSurveyAnalysis | v| & @

Welcome | €000 X Start Survey Analysis
Start Trip Counts and FLOP Analysis

AVX-512 support that incorporates masks T .

AN

sto| p
Summary @ Survey & Start Dependencies Analysis - /’///’/,/:// /:L‘:\
v I nteg rated CaC he S i mu |at0 r1 B Ferformance (GFLOFs) o oY AN w ~ | 0 UseSingle-Threaded Roofs @
1000 1 3] -8 - . o
(hierarchical roofline / multiple Al’s) A e e
0.1 fiZ AR @79 OF
. 0.01 =G . ~ v . v ; .
0.001 0.01 0.1 1 10 100 1000 10000 1.0e+5
v Automatically benchmarks target system | setinnate
(CaICUIateS Ce . N S [Source ITopDown | Code Analytics | Assemnbly |9Recommendatsons & Why No Vectorization?
ilings)
Address | Line Assembly Total Time % Self Time
. |function) 0x4107d0 Block 1: 146029716
v Full integration with existing Advisor COOENER DI oc20s 00208
0x4107d4 492 sub $0x210, %rsp

capabilities
http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

"Technology Preview, not in official product roadmap so far.

= A
4o P

BERKELEY LAB

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Example Use Cases

LIKWID on AMReX apps

= Used LIKWID to characterize AMReX - AR O aracterzation
applications =0
o |
» Measured cache and DRAM bytes. @ 256 —
o Averaged over 30min executions and 32 processes a 128
o Only 2 applications (not counting HPGMG proxy) used g y
>50% of memory bandwidth on average S
©
o Used this data to estimate average Al for each level of @
the memory hierarchy 16
o Used this data to infer requisite cache tapering 8

MFIX (32Px1T)
Nyx (32Px1T)
Nyx (4Px8T)

l_
h a
<
(Al
N
L2
=
4
Q<
o)
o

HPGMG (32Px1T)
HPGMG (4Px8T)
Combustor (32Px1T)
Combustor (4Px8T)
WarpX (32Px1T)
WarpX (4Px8T)

= A
44 rjrr}l ""|

BERKELEY LAB

Using Intel Advisor at NERSC

. Used AdViSOr to analyze] 6@\" DP Vector FMA Peak: 2775.8 GFLOP/s

cache/MCDRAM/DDR behavior of _. .&x\.m:ﬂ‘*/ O Vector gd Peak: 13575 GFL 0PI
"] \ \S
multiple apps on KNL //, -3
& \ﬂ-\&‘"‘ g 369"(960‘ =

r Add Peak: 162.?GFKOP[S

o Some loops bound by L2
o Some by MCDRAM

o Some loops had no clear memory or flop
bound | P

-2 -1 "0 "1 2
0/OFIVIA? 10 0 Arithmetic Inteln(;ity [FLOP/Byte] 0 0
%Vectorized?

O
O
o Non-FP vector instructions?
O
O

=
o
—

Performance [GFLOP/sec]
[
d
Ao oaaal " AIAAAAII\I
(\J@
o
<
% %0
Z.
g (%
%
&
&

» «m@

gppKernel.f90:303] N L1
gppKernel.f90:190] 1N L2
gppKernel.f90:296] MCDRAM
gppKernel.f90:242] W DRAM

Non-vector instructions?
Unpipelined instructions (e.g. divide)?

>
b
frrereeer

BERKELEY LAB

= QOften, one plots performance as a
function of thread concurrency

Roofline Scaling Trajectories

o Carries no insight or analysis
o Provides no actionable information.

Khaled Ibrahim developed a new
way of using Roofline to analyze

thread (or process) scalability

o Create a 2D scatter plot of performance

as a function of Al and thread
concurrency

o Can identify loss in performance due to

Increased cache pressure

Khaled Ibrahim, Samuel Williams, Leonid Oliker, "Roofline Scaling Trajectories: A Method

High Performance Computing Benchmarking and Optimization (HPBench), July 2018.

GFlop/s
10.0

1000.0

100.0

1.0

roofline_summary_sp_Ibl

.

- _A--

Class A
Class B
Class C

VFMA (1229)

I
0.05

I
0.50

I I
5.00 50.00

Arithmetic Intensity (Flops/Byte)

"
: b
rrrrrrr ‘ |

BERKELEY LAB

Roofline on GPUs

= We can similarly use NVProf to P100 GFU
O SP Stencils @ DP Stencils
record HBM data movement on 19,800 R
’ e - 9.3 TFLOP/s (SP) |
GPUs.
. . 6,400 - /s (DP) -
= \We used this technique to | ~
evaluate performance of 3,200 125pt SP- |
autotuning stencil library S 0 TR)
developed under an ECP ST S
project. 500 |
400 5 n
Tuowe.n. Zhao, Mary Hall, Protonu Basu, Samuel Vyilliams, I-!'ans Johgnsen, ” Performance. - i | 110
gggtgblllty for Stencils across CPUs and GPUs Using Bricks", (submitted to) Supercomputing, FLOP/HBM Byte
47 e

BERKELEY LAB

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Future Directions

Understanding/Visualizing Load Imbalance

= Generally, Roofline presumes computation and data movement is
balanced
o Obviously, a single core cannot hit full-socket flop/s
o More subtly, a single core cannot come anywhere close to socket GB/s
o We are investigating how to visualize this in Roofline (e.g. load imbalance ceiling)

= On Heterogeneous systems, the issue is more subtle
o Nominally, Roofline treats heterogeneous systems as two homoegeneous (sub)systems
o Examining work partitioning in accelerated applications and visualization

_— A
4o Y

BERKELEY LAB

New Architectures

= End of Dennard Scaling + End of Moore’s Law

Exponential growth in transistors will slow (end)

Can’t simply increase system size due to power & energy
Extract exponential performance from a ~fixed number transistors

o O O O

The emergence of specialization

= Emergence of Specialization and Multimodal Heterogeneity

Return to CISC (tensor cores, QFMA, VNNI, ...)

(multiple) specialized cores/accelerators (big/little, but we can think more profound)
(multiple) specialized discrete accelerators / node types

Multiple memory types (can’t get capacity, bandwidth, and energy in a single type)

_— A
o Y

BERKELEY LAB

Extending Roofline to New Architectures

= Requirements...
o Bandwidth (vertical, horizontal, and asymmetry)
o Measuring Data movement (vertical and horizontal)
o Special in-core ceilings (presence and exploitation)
o Overheads

= Targets...
o Al ISA extensions
NNPs and TPUs
FPGAs (interesting tradeoffs)
NVM / HBM

o O O

— A
.y Y

BERKELEY LAB

Consumers?

= Those wanting to understand performance on new architectures

* Those building runtimes/mappers/compilers that need accurate cost
models

* Those wanting to develop new algorithms/discretizations appropriate for
exascale systems.

52

Bottlenecks:

End of the Road or New Opportunities?
Latency/Overhead (2021-7)

Memory (2004-7?)

Conventional Wisdom:

o Computation is limited by how fast we can move data
(flops are free)

o We must minimize data movement

o We must have more bandwidth

New Conventional Wisdom:

o Flop-heavy methods that were cost prohibitive are now
attractive if they reduce (net) data movement

> If Flop/s are free, use them (there’s no penalty).

o Recompute terms on the fly (rather than storing in
memory)

o Use high-order discretizations (equal error for reduced
total data movement)

o Communication-Avoiding Algorithms

= Conventional Wisdom:

©)

Limits on performance (can’t get 90% of peak on any
CUDA kernel that does less than 1.4B FP ops

Numerical methods and applications limited by
Computational Depth (20us * #synchronization points)

= New Conventional Wisdom:

You can do anything you want (locally) every 20us

Flop- and Bandwidth-heavy methods that were cost
prohibitive are now attractive if they reduce (net)
synchronization...

If Flop/s and GB/s are free, use them

No penalty for redundant computation (or redundant
data movement) if it reduces synchronization

Synchronization-Avoiding Algorithms

~
: b
frrereeer

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

We’'re Hiring...

jobs.lbl.gov
search for #85373

"% U.S. DEPARTMENT OF

.2/ENERGY

{ZiTES %

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Questions

"% U.S. DEPARTMENT OF

.2/ENERGY

{ZiTES %

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Backup

Load Balancing

= Unfortunately, some loop
iterations may be more
expensive, or some threads may
run slower (e.g. cache effects)

o As a result, we can observe load
Imbalance where run time is limited by the

slowest thread TO
o We can assess the degree of load I;
imbalance by measuring max/average 3
o A slow outlier may substantially hurt T4
performance, but... Ig
T7

= A

57 r:'}m

BERKELEY LAB

Load Balancing

= Unfortunately, some loop
iterations may be more
expensive, or some threads may
run slower (e.g. cache effects)

o As a result, we can observe load
Imbalance where run time is limited by the
slowest thread

o We can assess the degree of load
imbalance by measuring max/average...

o A slow outlier may substantially hurt
performance, but...

o ...afast thread may not help or hurt much

- A
- Py

BERKELEY LAB

Lack of Parallelism

= Trends in architecture have enabled >>1000-way parallelism on a
chip (#FPUs * FPU latency)

= Not all loop nests support 1000-way parallelization
= Loop nests with <1000-way parallelism underutilize HW resources

= QOften codes must be restructured to enable more parallelism
o Loops are reordered/fused (OMP collapse(3))

o Variables(arrays) are privatized and reduced

o Nominally sequential functions/solvers on independent variables are performed
concurrently (MPI sub communicators or OMP Tasks)

o Workflows/multiphysics are parallelized at launch (SLURM MPMD)

_— A
o Y

BERKELEY LAB

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Performance
Models

Computational Complexity

= Assume run time is correlated toragna ono paralle] for #pragna om paraiiel for
with the number of operations 1 -t Prii=0;3a8;3r1

(e.g. FP OpS) 39 += ALTIK] * BIKI[§];

= Users define parameterize their scaling
algorithms, solvers, kernels constants?

= Count the number of operations |

as a function of those parameters FFrs:omiogN)inthe numberoff - Why did we
. . CG: O(N'-33) in the number of d rt f .d I
. DemonStrate run tlme IS MG: O(N) in the number of ele epa rom iaea
correlated with those parameters N-body: O(N?) in the number o scaling?

/

— A
61 r:>| ‘||||

BERKELEY LAB

Data Movement Complexity

. Assume run time iS Correlated Operation Flop’s Data
with the amount of data accessed DAXPY ON) o)
DGEMV O(N?) O(N?)
(or moved) DGEMM | O(N) oMY
= Easy to calculate amount of data o
accessed... count array accesses MG
N-body Which is more

= Data moved is more complex as it
requires understanding cache
behavior...

« Compulsory! data movement (array
sizes) is a good initial guess...

expensive...

Performing Flop’s, or \
Moving words from memory

N /

... but needs refinement for the effects of
finite cache capacities

THill et al, “Evaluating Associativity in CPU Caches”, IEEE 62 /\lﬂ
Trans. Comput., 19809.

BERKELEY LAB

Machine Balance and Arithmetic Intensity

= Data movement and computation Operation | Flop’s Data /| Al (ideal)
can operate at different rates oy OS;
= \We define machine balance as DGEMM //f(m
the ratio of... FFCT; °
Peak DP Flop/s ‘
Balance = & \

Peak Bandwidth N-body

= _..and arithmetic intensity as the
ratio of...

Al

_ Flop’s Performed
Data Moved

63

Distributed Memory Performance Modeling

= |n distributed memory, one communicates by sending messages
between processors.

= Messaging time can be constrained by several components...

 Overhead (CPU time to send/receive a message)
« Latency (time message is in the network; can be hidden)
« Message throughput (rate at which one can send small messages... messages/second)

« Bandwidth (rate one can send large messages... GBytes/s)

= Bandwidths and latencies are further constrained by the interplay of
network architecture and contention

= Distributed memory versions of our algorithms can be differently
stressed by these components depending on N and P (#processors)

— A
6 4 rr/r>| "“|

BERKELEY LAB

Computational Depth

= Imaglne d World Of Inflnlte Operation Flop’s Data Al (ideal) Depth

parallelism & bandwidth, but finite DAXPY 1 O ON) o) o)

_ DGEMV O(N?) O(N?) O(logN)

IatenCIGS DGEMM O(N3) OpogN)

= \We can classify algorithms by oo | om %QN)
depth (max depth of the MG
algorithm’s dependency chain) N-body

= For iterative algorithms, this is
product of iterations and depth
per iteration

65

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model:
In-Core Effects

Superscalar vs. instruction mix

= Define in-core ceilings based on

iInstruction mix... I
= e.g. Haswell Peak Flopls ., ep

e 4-issue superscalar ?ZL 259 EP
* Only 2 FP data paths E, 12% FP
* Requires 50% of the instructions to be FP “é

to get peak performance g

>
67 oryf

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on

instruction mix... |

" e.q. Haswell Peak Flop/s 100% FP
e 4-issue superscalar ?ZL 50% EP
« Only 2 FP data paths ° 25% FP
* Requires 50% of the instructions to be FP “é

to get peak performance g

» e.g. KNL
e 2-ISSue superscalar >
2 FP data paths
« Requires 100% of the instructions to be

... FPtogetpeakperformance
68 oryf

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on
instruction mix...

" e.q. Haswell Peak Flop/s 100% FP

* 4-issue superscalar
 Only 2 FP data paths

 Requires 50% of the instructions to be FP
to get peak performance

= e.g. KNL

e 2-ISSue superscalar
2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

= A
69 rr/r>| ""|

50% FP
25% FP

Attainable Flop/s

non-FP instructions
can sap instruction
issue bandwidth and
pull performance
below Rooflin

Arithmetic Intensity

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Roofline Model:
Cache Effects

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses
Peak Flop/s
D
o
[e)
L
o
@)
= <
£ No vectorizajoS
< "0
>
o
£
o
° >
Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses
71 i

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses |
= However, write allocate caches Peak Flop/s
can lower Al 2 ol
i ®
Q@ Q.O
E oy 2l=
I No vectdriSaffjo
< <=E--§-
[
£ 2
21s,
Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
~ Compulsory Misses + Write Allocates
72 oryf

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses |
= However, write allocate caches Peak Flop/s
can lower Al 8 ol
. . TH
= Cache capacity misses can have o
© ..G_-J —
d huge penalty E No vectcri:gatloé‘
< <=1:“§'
K
AR
Arithmetic Intensity (Flop:Byte)
Al = #Flop's
~ Compulsory Misses + Write Allocates + Capacity Misses
73 oryf

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s
can lower Al o FMA

= Cache capacity misses can have
a huge penalty

» Compute bound became
memory bound

Attainable Flop/s

Al = #Flop's
Compulsory Misses + Write Allocates + Capacity Misses

- A
74 r:ml "“|

BERKELEY LAB

S
A
rrrrrrr 1 BERKELEY LAB
BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Hierarchical Roofline vs.
Cache-Aware Roofline

...understanding different Roofline
formulations in Advisor

There are two Major Roofline Formulations:

= Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...

Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
« Defines multiple bandwidth ceilings and multiple Al's per kernel

« Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

= Cache-Aware Roofline

 llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
« Defines multiple bandwidth ceilings, but uses a single Al (flop:L1 bytes)

 As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant Al

= Why Does this matter?

« Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
« Cache-Aware Roofline model was integrated into production Intel Advisor
« Evaluation version of Hierarchical Roofline! (cache simulator) has also been integrated into Intel Advisor

"Technology Preview, not in official product roadmap so far. = X
-6 creer)

BERKELEY LAB

Hierarchical Roofline

>
b
rrrrrrr ‘ |

Captures cache effects

Al is Flop:Bytes after being filtered by
lower cache levels

Multiple Arithmetic Intensities
(one per level of memory)

Al dependent on problem size
(capacity misses reduce Al)

Memory/Cache/Locality effects are
observed as decreased Al

Requires performance counters or
cache simulator to correctly measure Al

77

Cache-Aware Roofline

Captures cache effects

Al is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

Single Arithmetic Intensity

Al independent of problem size

Memory/Cache/Locality effects are
observed as decreased performance

Requires static analysis or binary
instrumentation to measure Al

BERKELEY LAB

Example: STREAM

= |1Al.. #pragma omp parallel for
. 2ﬂ0ps 'FOI"('I=0;'I<N;‘I++){

z[1] = X[1] + alpha*Y[i];

2 x 8B load (old) }
1 x 8B store (new)

= 0.08 flops per byte
= No cache reuse...

lteration i doesn’t touch any data associated with
iteration i+delta for any delta.

= ... leads to a DRAM Al equal to
the L1 Al

— A
78 r:>| ‘"'|

BERKELEY LAB

Example: STREAM

Hierarchical Roofline

Attainable Flop/s

i

! Peak Flop/s

Performalnce is bound to
the minimum of the two

/
Inte/rcepts. .
Al 4 *L1 GB/s

Alpram * DRAM GB/s

«— Multiple Al’s....

: 1) Flop:DRAM bytes

. 2) Flop:L1 bytes (same)

' >
0.083

Arithmetic Intensity (Flop:Byte)

Cache-Aware Roofline

Attainable Flop/s

i

! Peak Flop/s

Obseryved performance
is 9orrelated with DRAM
bandwidth

«—— Single Al based on flop:L1 bytes

' >
0.083

Arithmetic Intensity (Flop:Byte)

>
b
rrrrrrr ‘ |

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

O |_1 A| #pragma omp parallel for
for(k=1;k<dim+1;k++) {
* Tflops for(§=1;3<dim+1;3++){
« 7 x 8B load (old) for(i=1;i<dim+1;1++){
. int 1jk = 1 + j*jStride + k*kStride;
1 x 88 store (new) new[ijk] = -6.0%01d[jk]
« =0.11 flops per byte old[ijk-1]
- some compilers may do register shuffles to reduce the old[ijk+1]
number of loads. old[ijk-jsStride]
old[1jk+jStride]
= Moderate cache reuse... old[ijk-kstride]

old[1jk+kStride];

« old[ijk] is reused on subsequent iterations of i,j,k

« old[ijk-1] is reused on subsequent iterations of i.
« old[ijk-jStride] is reused on subsequent iterations of j.
« old[ijk-kStride] is reused on subsequent iterations of k.

= ... leads to DRAM Al larger than
the L1 Al

")
80 l:r—r>| "“|

BERKELEY LAB

Example: 7-point Stencil (Small Problem)
Hierarchical Roofline Cache-Aware Roofline

! ! Peak Flop/s Peak Flop/s
2 : ; 2
a ! ! a
o : ! O
T ! T
ko) , i ko)
'cgs : | Performance bound is 'cgs
© : ' sthe minimum of the two ©
< . <
: Multiple Al’s....
«— 1) flop:DRAM ~ 0.44
% ' 2) flop:L1 ~ 0.11
9 ' ' > >
0.11 0.44 0.11
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

— A
81 rr/r>| "“|

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s

Peak Flop/s

Obseweddnce

is bet}ve/en L1 and DRAM lines
some cache locality)

Fjerformance bound is
the minimum of the two

Attainable Flop/s
Attainable Flop/s

! Multiple Al’s....

«— 1) flop:DRAM ~ 0.44
— 2) flop:L1 ~ 0.11
0.11 0.44

Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

>

= A
82 rr/r>| "“|

BERKELEY LAB

Example: 7-point Stencil (Large Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s

Peak Flop/s

Obseweddnce

is closef to DRAM line
7 .
less cache locality)

Capacity misses reduce
DRAM Al and performance

. Multiple Al’s....
'!«—— 1) flop:DRAM ~ 0.20

Attainable Flop/s
Attainable Flop/s

Single Al based on flop:L1 byt
& — 2) flop:L1 ~ 0.11 hgie Al based on Hiop-L1 bytes
I > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
83 rr/r>| ""|

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s Peak Flop/s

Obseweddnce

is closef to DRAM line
7 .
less cache locality)

: Actual observed performance
_ CI) is tied to the bottlenecked resource

Attainable Flop/s
Attainable Flop/s

and can be well below a cache
Roofline (e.g. L1).

0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
84 Py

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
1 1

! Peak Flop/s ! Peak Flop/s
2 : n | /
3 . 3 .
O ' [e) l
LL : ™ I
= i = Observed‘performance
3 . © is closef to DRAM line
© . Actual observed performance ® less cache locality)
< 7 is tied to the bottlenecked resource <
. and can be well below a cache
. Roofline (e.g. L1). Single Al based on flop:L1 bytes
I > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
o5 Py

BERKELEY LAB

"% U.S. DEPARTMENT OF

.2/ENERGY

{ZiTES %

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Little’s Law Redux

Little’'s Law Redux...

= Recast latency-bandwidth product for OMP/CUDA overheads & flop/s...

= Haswell (Xeon CPU):

o 100 GB/s, 1.3 Tflop/s, ~1us OMP overhead
o Can’t hit peak bandwidth on any kernel that moves less than 100KB

o Can’t hit peak flops on any kernel that does less than 1M FP operations

= KNL (Xeon Phi Manycore):

o 400 GB/s, 2.5 Tflop/s, ~5us OMP overhead
o Can’t hit peak bandwidth on any kernel that moves less than 2MB
o Can’t hit peak flops on any kernel that does less than 13M FP operations

= \olta GPU:

o 800 GB/s, 7 Tflop/s, ~20us CUDA launch overhead
o Can’t hit peak bandwidth on any kernel that moves less than 16MB
o Can’t hit peak flops on any kernel that does less than 140M FP operations

= A
a7 Py

BERKELEY LAB

