
Performance Portable Optimizations of an Ice-sheet
Modeling Code on GPU-supercomputers

Oscar Antepara, Samuel Williams
Lawrence Berkeley National Laboratory

Berkeley, USA
{oantepara, swwilliams}@lbl.gov

Max Carlson, Jerry Watkins
Sandia National Laboratories

Livermore, USA
{maxcarl, jwatkin}@sandia.gov

Abstract—In this paper, we present GPU-optimizations for
an ice-sheet modeling code known as MPAS-Albany Land Ice
(MALI). MALI is a C++ template code that leverages the
Kokkos programming model for portability and the Trilinos
library for data structures, nonlinear and linear solvers and
optimization packages for ice-sheet simulations. Performance of
the most expensive kernel is assessed via the Roofline model
to highlight the potential for code improvement according to
the underlying GPU architecture. We perform a collection of
optimizations consisting of loop fusions, loop optimizations and
local accumulation to productively and portably attain an overall
speedup of 3× in either NVIDIA and AMD GPU. We analyze the
performance gains using a time-oriented performance portability
model based on time per invocation and GPU data movement.
Results show an increment between 20% and 50% on the
performance portability metric by improving data locality on the
GPU kernels of a Stokes solver and highlights the importance
of optimizing GPU-ported scientific applications to maximize
memory bandwidth and minimize data movement on modern
supercomputers.

Index Terms—performance portability, GPUs, loop optimiza-
tion, finite-element, Kokkos, ice-sheet modeling

I. INTRODUCTION

Research on the Antarctic System has become a priority due
to climate change and the impact of rising sea levels, which
could lead to devastating global problems [1]. The develop-
ment of models to compute the dynamic processes of ice sheets
and making significant progress on projections for future sea-
level rise pose considerable computational challenges. On this
topic, high-resolution simulations are required to obtain accu-
rate projections, and High-Performance Computing is needed
to deliver faster simulations.

In today’s HPC landscape, with the fastest supercomputers
based on GPU architectures and with the availability of several
programming models, the adoption of modern techniques to
improve performance and provide portability for scientific
codes that have traditionally targeted CPU-based supercom-
puters remain fundamental to the advancement of scientific
discovery for at least the next decade. This paper presents
work on portable GPU optimizations for MALI [2] (MPAS-
Albany Land Ice), an ice-sheet model code that consists of
MPAS (Model for Prediction Across Scales) library [3] and
Albany [4], a finite element code to solve partial differential
equations.

Since MALI’s performance mainly relies on solving a first-
order approximation of the Stokes equation, we will focus
on the most expensive GPU operation in the solver and
describe our effort on performance portability for NVIDIA
A100 GPUs on NERSC’s Perlmutter supercomputer and the
AMD MI250X GPUs on OLCF’s Frontier supercomputer.
We will show performance gains across different GPUs by
restructuring loops to improve data locality. Furthermore, we
present a time-oriented performance portability model that can
quantitatively evaluate performance portability for memory-
bound kernels, and from which, we can assess the original
implementation and our optimizations based on the application
and architectural bounds.

The paper makes the following contributions: (1) it demon-
strates the performance of GPU kernels in the velocity solver
of an ice-sheet model on recent NVIDIA and AMD GPUs; (2)
it introduces a time-oriented performance portability model
based on time per invocation and GPU data movement to
compare kernel implementations against the architectural and
application bounds; and, (3) it demonstrates that the opti-
mizations designed to reduce data movement can produce
performance gains and are applicable across different GPUs.

II. RELATED WORK

Research efforts on ice-sheet modeling have been focused
on improving the models to represent the physical dynamics
more closely to reality or to couple them with other Earth
system models. As such, algorithm and code development to
enable high-resolution simulations and to efficiently use high-
performance systems have been the focus in the last few years.

As GPUs increasingly dominate the fastest high-
performance computing systems [5], researchers have focused
on restructuring algorithms to exploit GPUs to accelerate
their simulations. GPU-accelerated codes for different aspects
of the ice-sheet model solver using CUDA and targeting
NVIDIA GPUs, where [6] evaluated performance based
on a CPU to GPU comparison speedup. Additionally, [7]
presented a finite difference GPU-accelerated code where
they evaluated performance on several GPUs with their most
recent GPU being the NVIDIA V100, although their focus
is showing validation test cases and weak scalability studies.
Both studies focus their efforts on porting code from CPU
to GPU and examining their efforts on speedup or weak

scalability. However, as modern supercomputers are based on
GPUs of different vendors, approaches based on a specific
programming model or optimizations targeting a specific GPU
will require extra effort to ensure portability and productivity.

Previously, MALI was analyzed on older architectures such
as Intel Knights Landing (KNL) and NVIDIA V100 GPUs as
in [8]. However, their work focused more on application-level
improvements, where performance portability was character-
ized by execution time and scalability efficiencies for multi-
core/manycore processors and GPUs. In this paper, our work
expands on these initial efforts by providing a performance
evaluation of GPU kernels in the velocity solver in MALI
on more recent GPUs, namely the NVIDIA A100 and AMD
MI250X, and describe portable GPU optimizations that enable
GPU kernel performance near the application and architectural
limits.

We cite prior performance portability studies for different
scientific applications on the most recent GPUs. A comparison
of several mini-applications and a study about performance
portability metrics to evaluate performance consistency was
described in [9]. Evaluation of OpenMP on earlier GPUs, such
as NVIDIA, AMD and INTEL, for a proxy of LAMMPS using
the Roofline model was researched in [10] and performance
portability studies also using performance efficiencies based
on the Roofline model in [11]. Antepara et al. [12] evalu-
ated stencil computations on similar GPUs as in this paper
and analyzed performance portability based on fraction of
roofline and fraction of theoretical arithmetic intensity. In [13],
OpenMP and OpenACC were evaluated on similar GPUs and
data movement at GPU device memory was evaluated across
programming models and GPU architectures to highlight its
implication on performance for GPU-accelerated loops in a
plasma physics application. Sun and Lu [14] did a study
about the memory-bounded speedup model, performance tools
(Roofline model) and provided some insights about the present
and future of memory systems. In this context, our work
presents a methodology to evaluate performance portability for
memory-bound kernels by using a time-oriented performance
portability model, which can identify performance bounds to
provide some insight to maximize performance.

III. MALI AND LAND ICE SIMULATION TEST

MALI is an ice-sheet model built on MPAS and Albany.
In practice, Albany dominates the MALI’s runtime. Albany
is a C++ templated finite element library that solves partial
differential equations. It uses Kokkos [15], [16] as a program-
ming model to ensure performance portability across several
CPU and GPU architectures. Moreover, it integrates Trili-
nos [17] solvers and optimization packages and uses MPI for
distributed memory parallelism. In what follows, we describe
the mathematical formulation and numerical method for ice-
sheet dynamics used in MALI as well as the numerical test,
based on the Antarctica simulations, to evaluate performance
on GPUs.

A. Mathematical Model and Numerical Method

Albany uses the first-order (FO) approximation to the non-
linear Stokes flow equations for glaciers and ice sheets [18],
[19], also referred to as the Blatter–Pattyn model [20], [21].
It follows the partial differential equations:

−∇ · (2µϵ̇1) + ρg
∂s

∂x
= 0,

−∇ · (2µϵ̇2) + ρg
∂s

∂y
= 0,

(1)

where ρ is the ice density, g is the gravity acceleration, ϵ̇
is the strain-rate tensor and s ≡ s(x, y) denotes the upper
surface boundary. The effective viscosity µ is derived from
Glen’s flow law [22], [23] and is also dependent on the strain
rate. In addition to the FO approximation equations, a dynamic
equation for mass conservation is also coupled as follows,

∂H

∂t
+∇ · (Hū) = ȧ+ ḃ, (2)

where H is the ice thickness, t is time, ū is the depth-averaged
velocity vector, ȧ is the surface mass balance, and ḃ is the basal
mass balance. The full details of the model and the boundary
conditions for the 3D ice-sheet equations used in Albany are
described in [24].

The first-order approximation model defined in Equation 1
is discretized using low-order nodal prismatic finite elements
on a 3D mesh extruded from a triangulation dual to the MPAS
Voronoi mesh [2]. The discretization of the velocity equations
can be written in the compact form,

F (U ; {ϕi}, {∇ϕi}, H, ...) = 0, (3)

where U is a vector containing the ice velocity values at the
mesh nodes. {ϕi} and {∇ϕi} are the sets of basis functions
and its gradients. F is a vector function of the solution U ,
which also depends on the basis functions and ice thickness
H .

A damped Newton’s method solves the nonlinear system
where a Jacobian matrix is computed at each nonlinear it-
eration using automatic differentiation (AD). Moreover, the
resulting linear system is solved with the GMRES method
using the matrix-dependent semicoarsening algebraic multi-
grid (MDSC-AMG) preconditioner [25]. Details about MALI
workflow for the velocity solver are described in [8].

B. Land Ice Numerical Test

MALI performance is evaluated using a series of tests
consisting of high-resolution Antarctic ice sheet meshes. Nu-
merical studies on Antarctica meshes provide a standalone
simulation to analyze the velocity solver performance on GPUs
and it has been previously used as a numerical test on other
research papers [25], [26]. Figure 1 shows an example of
a MALI production run on Perlmutter with the ice velocity
solved on the GPUs.

This paper will focus on a single-node test consisting of
a 16-kilometer Antarctica resolution mesh with quadrilateral

Fig. 1. Simulation snapshot of the Antarctic Ice Sheet under a high greenhouse
gas emission scenario using MALI on Perlmutter with the ice velocity solved
on GPUs.

elements. The mesh is extruded by 20 layers; the velocity
equations are solved by the model and methods described
in Section III-A, and the mean value of the final solution is
compared to a previously tested value using a relative tolerance
of 10−5 on all machines.

For this test, the number of elements on each NVIDIA A100
and one GCD AMD MI250X are fixed and are approximately
256K hexahedron elements. Additionally, the test performs
a nonlinear solve consisting of eight steps, where at each
nonlinear step, the linear solver operates in an iterative manner
until reaching a tolerance of 10−6.

IV. EXPERIMENTAL SETUP

In this section, we provide details of the GPU-based sys-
tems used for the performance and performance portability
study. We also provide details about the programming model,
modules and profiling tools used in the evaluation.

A. GPU Architectures

Perlmutter [27] is an HPE Cray EX supercomputer at
the National Energy Research Scientific Computing Center
(NERSC), Lawrence Berkeley National Laboratory. Each Perl-
mutter GPU node consists of one AMD EPYC 7763 CPU
and four of NVIDIA Ampere A100 GPUs [28]. Each GPU
contains 108 streaming multiprocessors (SM), each with four
warp schedulers of 16 integer units and 8 double-precision
floating-point units. The GPU provides a peak performance of
about 9.77 TFLOP/s of double-precision vector performance.
The SMs each include a 192KB shared memory/data cache
and share a 40MB L2 cache and 40GB of HBM accessible
at 1.55TB/s. The GPUs are individually connected to the
CPU with a PCIe 4.0 x16 link providing 32GB/s. Nodes are
connected with a Slingshot 11 interconnect using four NICs
per node, each providing 25GB/s/direction of bandwidth.

Frontier [29] is the HPE Cray EX supercomputer at the
Oak Ridge National Laboratory. Each Frontier node contains
one 64-core AMD EPYC 7A53 CPU and four AMD MI250X

GPUs [30]. Each MI250X instantiates two Graphical Compute
Dies (GCDs), each with 110 compute units (CU). Each CU
includes four 16-wide 64b SIMD units to execute either integer
or floating-point instructions and a small L1 cache. Each GCD
also includes an 8MB L2 cache, provides a peak FP64 perfor-
mance of about 24 TFLOP/s (vector-based double precision),
and is connected to four HBM stacks of 64GB providing
1.6TB/s. Network connection between nodes uses Slingshot 11
system but the NIC is attached directly to the GCDs. From the
programmer’s perspective, each GCD should be targeted as if
it were an independent GPU. Thus, compared to Perlmutter’s
A100 GPUs, each MI250X GCD provides more than twice
peak FLOP rate for FP64, comparable bandwidth and 50%
more memory capacity.

B. Programming Model, Compilers and Profiling Tools

Albany is a C++ finite element code that uses the Kokkos
programming model and Trilinos libraries and optimization
packages. Table I shows the modules and compiler version to
compile, build, and execute Albany and its dependencies on
Perlmutter-NERSC and Frontier-OLCF.

On Perlmutter, the GNU compiler is required to build
Albany. We use NVIDIA Nsight Systems [31] to profile the
Antarctica test and NVIDIA Nsight Compute [32] to profile
and collect GPU performance metrics related to Roofline
analysis.

Frontier offers GNU compilers and a programming en-
vironment similar to Perlmutter. We use the AMD ROCm
Profiler [33] to profile and collect GPU performance metrics
on AMD MI250X.

TABLE I
PROGRAMMING MODELS, MODULES AND COMPILER VERSIONS USED TO

BUILD AND TEST ALBANY ON PERLMUTTER-NERSC, AND
FRONTIER-OLCF MACHINES.

HPC Programming Modules and Compiler
System Model Versions
Perlmutter Kokkos gcc/11.2.0,
NERSC PrgEnv-gnu/8.3.3,

cudatoolkit/11.7,
cpe/23.03,

craype/2.7.20,
cray-mpich/8.1.25,

e4s/23.05,
NvidiaNsightSystems/23.3.1,
NvidiaNsightCompute/23.2.1

Frontier Kokkos gcc/12.2.0,
OLCF PrgEnv-gnu/8.3.3,

cray-mpich/8.1.28,
ROCm/5.4.3,
craype/2.7.31

V. ANTARCTICA TEST GPU PROFILING AND GPU
OPTIMIZATIONS

This paper focuses on the Antarctica numerical test de-
scribed in Section III-B. The test was initially profiled on
the NVIDIA A100 GPU, and the most time-consuming GPU
kernel was identified during the evaluation of the local

BASELINE
t e m p l a t e<typename EvalT , typename T r a i t s >
KOKKOS INLINE FUNCTION
void StokesFOResid<EvalT , T r a i t s > : :
o p e r a t o r () (c o n s t LandIce 3D Tag& tag ,

c o n s t i n t& c e l l) c o n s t {
f o r (unsigned i n t node =0; node<numNodes ; ++node){

R e s i d u a l (c e l l , node , 0) = 0 . ;
R e s i d u a l (c e l l , node , 1) = 0 . ;

}

i f (cond){
. . .

} e l s e {
f o r (unsigned i n t qp =0; qp < numQPs ; ++qp) {

S c a l a r T mu = muLandIce (c e l l , qp) ;
S c a l a r T s t r s 0 0 = 2 . 0 *mu*

(2 . 0 * Ugrad (c e l l , qp , 0 , 0) +
Ugrad (c e l l , qp , 1 , 1)) ;

S c a l a r T s t r s 1 1 = 2 . 0 *mu*
(2 . 0 * Ugrad (c e l l , qp , 1 , 1) +
Ugrad (c e l l , qp , 0 , 0)) ;

S c a l a r T s t r s 0 1 = mu*(Ugrad (c e l l , qp , 1 , 0) +
Ugrad (c e l l , qp , 0 , 1)) ;

S c a l a r T s t r s 0 2 = mu* Ugrad (c e l l , qp , 0 , 2) ;
S c a l a r T s t r s 1 2 = mu* Ugrad (c e l l , qp , 1 , 2) ;
f o r (unsigned i n t node =0; node<numNodes ;
++node) {

R e s i d u a l (c e l l , node , 0) +=
s t r s 0 0 *wGradBF (c e l l , node , qp , 0) +
s t r s 0 1 *wGradBF (c e l l , node , qp , 1) +
s t r s 0 2 *wGradBF (c e l l , node , qp , 2) ;

R e s i d u a l (c e l l , node , 1) +=
s t r s 0 1 *wGradBF (c e l l , node , qp , 0) +
s t r s 1 1 *wGradBF (c e l l , node , qp , 1) +
s t r s 1 2 *wGradBF (c e l l , node , qp , 2) ;

}
}

}
f o r (unsigned i n t qp =0; qp < numQPs ; ++qp) {

S c a l a r T f r c 0 = f o r c e (c e l l , qp , 0) ;
S c a l a r T f r c 1 = f o r c e (c e l l , qp , 1) ;
f o r (unsigned i n t node =0; node < numNodes ;
++node) {

R e s i d u a l (c e l l , node , 0) + = f r c 0 *
wBF(c e l l , node , qp) ;

R e s i d u a l (c e l l , node , 1) + = f r c 1 *
wBF(c e l l , node , qp) ;

}
}

}

OPTIMIZED
t e m p l a t e<typename EvalT , typename T r a i t s >
t e m p l a t e<i n t NumNodes>
KOKKOS INLINE FUNCTION
void StokesFOResid<EvalT , T r a i t s > : :
o p e r a t o r () (c o n s t LandIce 3D Opt Tag<NumNodes>& tag ,
c o n s t i n t& c e l l) c o n s t {

s t a t i c c o n s t e x p r i n t num nodes =
LandIce 3D Opt Tag<NumNodes> : : num nodes ;
S c a l a r T r e s 0 [num nodes] = {} ;
S c a l a r T r e s 1 [num nodes] = {} ;
f o r (s i z e t qp =0; qp < numQPs ; ++qp) {

S c a l a r T mu = muLandIce (c e l l , qp) ;
S c a l a r T s t r s 0 0 = 2 . 0 *mu* (2 . 0 * Ugrad (c e l l , qp , 0 , 0) +

Ugrad (c e l l , qp , 1 , 1)) ;
S c a l a r T s t r s 1 1 = 2 . 0 *mu* (2 . 0 * Ugrad (c e l l , qp , 1 , 1) +

Ugrad (c e l l , qp , 0 , 0)) ;
S c a l a r T s t r s 0 1 = mu*(Ugrad (c e l l , qp , 1 , 0) + U

grad (c e l l , qp , 0 , 1)) ;
S c a l a r T s t r s 0 2 = mu* Ugrad (c e l l , qp , 0 , 2) ;
S c a l a r T s t r s 1 2 = mu* Ugrad (c e l l , qp , 1 , 2) ;
S c a l a r T f r c 0 = f o r c e (c e l l , qp , 0) ;
S c a l a r T f r c 1 = f o r c e (c e l l , qp , 1) ;
f o r (s i z e t node =0; node < num nodes ; ++node){

r e s 0 [node]+= s t r s 0 0 *wGradBF (c e l l , node , qp , 0) +
s t r s 0 1 *wGradBF (c e l l , node , qp , 1) +
s t r s 0 2 *wGradBF (c e l l , node , qp , 2) +
f r c 0 *wBF(c e l l , node , qp) ;

r e s 1 [node]+= s t r s 0 1 *wGradBF (c e l l , node , qp , 0) +
s t r s 1 1 *wGradBF (c e l l , node , qp , 1) +
s t r s 1 2 *wGradBF (c e l l , node , qp , 2) +
f r c 1 *wBF(c e l l , node , qp) ;

}
}
f o r (s i z e t node =0; node < num nodes ; ++node){

R e s i d u a l (c e l l , node , 0) = r e s 0 [node] ;
R e s i d u a l (c e l l , node , 1) = r e s 1 [node] ;

}
}

Fig. 2. Baseline and Optimized GPU kernel code listing for the Jacobian and Residual in Albany. Note that the same code is used for both with the
difference that the Jacobian uses Sacado data structure to compute the derivatives.

Jacobian, which is also the same code for the computa-
tion of the Residual term of the first-order approximation
equations. The difference between both kernels is that the
Jacobian requires storing and computing derivative com-
ponents for each local degree of freedom of the Residual.

Since Albany is a C++ template code that uses operator
overloading, the computation and storage of derivative com-
ponents in the Jacobian calculation are performed with
Sacado data structures using automatic differentiation [34].
Sacado is an automatic differentiation package that provides
multiple data structures to efficiently use expression template
techniques in operator overloading-based implementation for

automatic differentiation in C++. The most efficient but least
flexible approach is using the Sacado data structure called
SFad, where the number of derivative components is set
at compile time. This approach is rather convenient since
SFad could be set to 16 for the model equation and the
mesh employed in this paper; for each hexahedron element
that consists of 8 nodes and two velocity components, 16
derivatives are needed to compute the local Jacobian term.

In this work, we have improved the local Jacobian and
Residual kernel performance by restructuring the GPU
kernel loops to improve data locality. The optimizations per-
formed in the Albany source code are described as follows:

Loop Optimizations: To improve loop performance in
a GPU kernel, we use size_t and compile-time variables,
instead of runtime variables, for the loop condition expression
that is evaluated before each loop iteration. This optimization
is more noticeable in the performance of GPU kernels with
timings closer to latency values.

Loop Fusion: We merge operations under a single loop to
avoid unnecessary initialization loops and multiple redundant
loops that could be grouped together. This optimization mini-
mizes the number of reads/writes on global arrays. Moreover,
we take the if statements outside the kernel execution to
avoid branch divergence and help the compiler to do a better
job at optimizing the GPU kernel. Since we look to optimize
ice-sheet simulations, the if statements are configuration-
dependent and it is easy to remove them by creating a specific
optimized kernel.

Local Accumulation: Given that we focus on improving
the performance of memory-bound GPU kernels, we accumu-
late results on local arrays instead of the output global array
to improve data locality, thus incurring in less data fetching
from GPU global memory that has the slowest bandwidth in
the GPU memory hierarchy.

Figure 2 shows the baseline and the optimized code to
highlight the code differences and the optimizations described
in the last paragraph. In the next section, we show the
performance baseline for these kernels and the performance
gains for the optimized versions on NVIDIA and AMD GPUs.

VI. RESULTS

The performance evaluation presented in this section uses
one MPI process per A100 GPU and one process per GCD
on MI250X GPUs. We focus on the GPU kernel performance
when computing the local Jacobian and Residual terms
for the nonlinear Stokes solver on a 16-kilometer resolution
Antarctic mesh on a single node. To analyze the performance
results for the GPU kernels, we use the Roofline model [35]
to illustrate the kernel’s performance against the GPU archi-
tectural bounds limited by the GPU high memory bandwidth
(HBM) and FP64 Peak Performance in TFLOPS (vector-based
double precision).

Figure 3 shows the GPU performance in FLOPS/s and the
arithmetic intensity (AI) in FLOPs per byte for the baseline
and optimized versions of the Jacobian and Residual
kernels. On the left, in figure 3, we have the performance
comparison on an NVIDIA A100 GPU, and on the right,
we have the performance results using one GCD on AMD
MI250X GPU. Note that the baseline performance for the
Jacobian kernel, the most time consuming kernel in the
solver, is below 40% of the peak GPU memory bandwidth on
both GPUs.

Observe that the optimizations applied to improve data
locality accelerated both kernels on both GPUs by increasing
arithmetic intensity (reducing data movement). Moreover, the
optimizations on NVIDIA A100 further enhance performance
by increasing memory bandwidth to 90% of peak. This effect
was present, albeit smaller, on the AMD MI250X where

the kernel attains 60% of peak memory bandwidth. This
highlights the fact that optimizing the memory-intensive GPU
kernels ubiquitous in scientific computing requires a balanced
understanding of maximizing bandwidth and maximizing data
locality to minimize data movement.

Given that this is the first analysis of Albany on
AMD GPUs, we want to present additional features that
could improve performance. Kokkos provides options
to users to set execution policies that give hints to
the compiler about kernel launch parameters. By using
Kokkos::LaunchBounds<MaxThreads,MinBlocks>,
we can change the workgroup size and analyze how it affects
performance. Table II shows the time per invocation for
the optimized Jacobian and Residual kernels, the
LaunchBounds parameters, and we have included the
number of Architectural Vector General-Purpose Registers
(Arch. VGPRs) and Accumulation Vector General-Purpose
Register (Accum. VGPRs) for each setting. On CDNA2
accelerators like the MI250X, there is a total of 512 VGPRs
with 256 available for each type. The default values for
MaxThreads,MinBlocks are 256, 1 for Jacobian and
1024, 1 for Residual.

TABLE II
TIME PER CALL, ARCHITECTURAL VGPRS, ACCUMULATION VGPRS
AND SPEEDUP VS. DEFAULT VALUES FOR OPTIMIZED JACOBIAN AND

RESIDUAL KERNELS ON AMD MI250X GPUS. OBSERVE THAT THE BEST
PERFORMANCE IS ACHIEVED WITH MAXTHREADS,MINBLOCKS EQUAL
TO 128,2 OR 256,2 AND WITH THE MOST USE OF VGPRS AVAILABLE.

<MaxThreads,MinBlocks>
Opt. Kernel Default 128,2 128,4 256,2 1024,2

Jacobian time (s) 8.3e-2 5.4e-2 8.3e-2 5.4e-2 8.5e-2
Arch. VGPRs 128 128 128 128 128

Accum. VGPRs 0 128 0 128 0
speedup 1.54× 1× 1.54× 0.98×

Residual time (s) 2.8e-3 2.4e-3 2.6e-3 2.4e-3 3.0e-3
Arch. VGPRs 84 128 84 128 84

Accum. VGPRs 4 0 4 0 4
speedup 1.17× 1.08× 1.17× 0.94×

With a different set of LaunchBounds, results show that
using MaxThreads,MinBlocks equal to either 128,2 or
256,2 results in a 1.5× and 1.2× speedup for the Jacobian
and Residual kernel respectively. Additionally, it is impor-
tant to note that the best performance is achieved when the
compiler can use most of the registers available as it detects
that some operations in the kernels can use architectural and
accumulation VGPRs. For the NVIDIA results, there was no
change in performance by varying thread block size as the
default for both kernels was equal to 128.

Overall results in Table III show speedups from our opti-
mizations ranging from 3.3× for the Jacobian and 2.2×
for the Residual on NVIDIA A100 and 2.7× for the
Jacobian and 3.5× for the Residual on one GCD AMD
MI250X, which shows the impact of data locality for memory-
bound kernels in the context of two different GPU-accelerated
systems.

1e−01

1e+00

1e+01

 0.1 1 10

1.55 T
B/s

9.7 TFLOP/s

40%

Baseline Jacobian
Baseline Residual

Optimized Jacobian
Optimized Residual

P
e

rf
o

rm
a

n
c
e

 [
F

L
O

P
/s

](
1

=
1

e
1

2
)

Arithmetic Intensity [FLOP/byte]

1e−01

1e+00

1e+01

 0.1 1 10

1.6 T
B/s

23.9 TFLOP/s

40%

Baseline Jacobian
Baseline Residual

Optimized Jacobian
Optimized Residual

P
e

rf
o

rm
a

n
c
e

 [
F

L
O

P
/s

](
1

=
1

e
1

2
)

Arithmetic Intensity [FLOP/byte]

Fig. 3. Roofline for the baseline and optimized versions of the Jacobian and Residual kernels using Kokkos on NVIDIA A100 GPU (left) and a single
GCD on AMD MI250X GPU (right). Notice that data locality focused optimizations for memory-bound kernels can improve the performance of already
GPU-ported kernels up to approximately 3× on both GPUs.

TABLE III
OVERALL RESULTS FOR TIME PER CALL, AND SPEEDUP VS. BASELINE
JACOBIAN AND RESIDUAL KERNELS ON NVIDIA A100 AND AMD

MI250X GPUS. NOTE THAT WORKING ON GPU KERNEL OPTIMIZATIONS
FOCUSED ON IMPROVING DATA LOCALITY CAN REDUCE THE TIME PER

CALL BETWEEN 2× AND 4× FOR BOTH KERNELS AND GPUS.

Time in seconds
Kernel Baseline Optimized Baseline Optimized

A100 A100 GCD MI250X GCD MI250X
Jacobian 1.2e-1 3.6e-2 1.4e-1 5.4e-2
speedup 3.3× 2.7×
Residual 3.7e-3 1.7e-3 8.3e-3 2.4e-3
speedup 2.2× 3.5×

A. Performance Portability Model and Evaluation

To advance research on climate modeling and improve
scientific throughput, one must exploit GPU-accelerated su-
percomputing facilities capabilities to enable high-resolution
simulations. This, in turn, orients research towards software
modernization to exploit their GPUs. As such, MALI and
other ice-sheet model codes are transitioning their software
to support a diverse set of GPU architectures from NVIDIA,
AMD, and INTEL.

Although it is imperative to implement algorithmic inno-
vations and performance optimizations in ice-sheet models,
productively exploiting the panoply of GPU architectures in a
productive manner is an immense challenge. In most ice-sheet
models, the time spent on executing velocity solvers dominates
the run time. Performance analysis in this regard has been
mostly related to improving performance and reporting the
performance differences between CPU and GPU implemen-
tations. Although raw performance can be quantified through
performance-oriented metrics, including FLOP/s or run-time,
they are ultimately insufficient when assessing performance
portability as they lack insight into the interplay between
algorithmic characteristics and architectural capabilities. Thus,
we aim to characterize performance portability based on

1e+00

1e+01

1e+02

1e+03

1e+00 1e+01 1e+02

GPU HBM Peak in TB/s

Theoretical Min
GBytes Moved

ObservedAchievable

Achievable

Efficiency

Efficiency

T
im

e
 (

m
s
)

Bytes Moved (GBytes)

Fig. 4. Illustration of the Time-oriented Performance Portability Model based
on time per invocation and bytes moved through GPU HBM. Scientific GPU
kernels can be evaluated (Observed) and compared against the architectural
and application bounds (Achievable). Observe that the architectural bound
is defined with the GPU HBM peak and the application bound with the
theoretical minimum number of bytes moved in the GPU kernel based on
the number of reads/writes of the multidimensional arrays used in the GPU
kernel computation.

architectural and application characteristics that are readily
understandable by a broad spectrum of researchers beyond
computer scientists and computer architecture.

Roofline-based performance analysis makes it clear that
many GPU kernels in scientific modeling and simulations (and
most in MALI) are memory-bound. That being said, figure 3
clearly highlights that data movement can differ substantially
for the same kernel when run on different GPUs. To that end,
we introduce a performance portability model that focuses
on GPU kernel execution time and data movement on the
GPU HBM. Figure 4 illustrates the time-oriented performance
portability model for memory-bound kernels. The x-axis is
data movement to/from GPU HBM in GBytes while the y-

axis is GPU kernel time per invocation in milliseconds. Finite
GPU memory bandwidth sets a lower bound (diagonal line) to
run time below which would imply faster-than-light execution.
For streaming computations, the cache:DRAM bandwidth ratio
of 1.0 vastly exceeds the cache:DRAM data movement ratio,
ensuring DRAM remains the bottleneck. For non-hypersparse
sparse matrix operations, typical of operations on unstructured
grids, the cache:DRAM data movement ratio is dependent on
the number of nonzeros per row but asymptotically approaches
1.5 — far less than the cache:DRAM bandwidth ratio and
ensuring computations bottlenecked by DRAM bandwidth.
As the A100 GPU and an MI250X GCD have comparable
memory bandwidth, we can plot both architectures on a single
figure using a common bandwidth lower bound. Ultimately,
our approach is similar to the example in [36], where a time-
oriented Roofline was introduced based on execution time and
arithmetic intensity but presumes all kernels are ultimately
memory-bound. We augment this methodology by defining
“walls” based on a theoretical analysis of data movement
given the size of arrays a GPU kernel operates on and finite
cache capacity. No degree of optimization for a given GPU
kernel would ever allow that kernel to move less data than this
theoretical minimum on data movement. For each kernel, we
may define three coordinates that may be plotted in this data
movement-run time plane: 1) measured data movement and
run time for the baseline implementation, 2) measured data
movement and run time for the optimized implementation,
and 3) theoretical minimum data movement and theoretical
minimum run time (the ratio of theoretical minimal data
movement and memory bandwidth).

Figure 5 presents the time-oriented performance model with
the measured values of time per invocation in milliseconds
and GBytes moved through GPU HBM for the baseline and
optimized Jacobian and Residual kernels. One of the ad-
vantages of the time-oriented model is that it can illustrate the
comparison between different kernels and GPU architectures.
For the ice-sheet model, computing the theoretical GBytes
moved is relatively easy since most operations (reads/writes)
are based on arrays defined according to the numerical method.
In this case, all arrays are multidimensional based on the
number of elements, dimensions, quadrature points, number
of derivatives, etc. As described in Section V, the Jacobian
kernel uses the Sacado data structure since it requires a set
of derivatives for its computation. Therefore, the Jacobian
kernel is expected to move 16 times more data compared to
the Residual kernel, as shown in Figure 5.

Results show the lack of data locality on the baseline
implementation. Conversely, the optimized implementations
are very close to the theoretical application bounds based
on GBytes moved. This means we have achieved nearly
optimal data movement for both kernels and architectures. It
also illustrates that by improving data locality, we can gain
comparable speed-ups up to 3× on both architectures and get
closer to the architectural limit defined by the peak GPU HBM.

We now explore the performance portability metric for the
ice-sheet model code. Note that we follow the performance

TABLE IV
PERFORMANCE PORTABILITY METRIC PP BASED ON TIME PER

INVOCATION (etime) AND GPU HBM DATA MOVEMENT (eDM)
EFFICIENCIES. GPU OPTIMIZATIONS SHOW AN IMPROVEMENT BETWEEN

20% AND 50% IN PP DEPENDING ON THE EFFICIENCY.

Efficiency Kernel A100 1 GCD PP
MI250X

Baseline etime Jacobian 39% 38% 39%
etime Residual 62% 42% 50%
eDM Jacobian 53% 42% 47%
eDM Residual 65% 41% 50%

Optimized etime Jacobian 79% 53% 63%
etime Residual 88% 60% 71%
eDM Jacobian 84% 81% 83%
eDM Residual 100% 100% 100%

portability metric evaluation described in [37], [38]. We define
the efficiencies as the comparison of the measured values
(observed) in time per invocation and GBytes moved in the
GPU HBM against the architectural and application bounds
(achievable), respectively, as illustrated in Figure 4. Specif-
ically, we define performance portability PP, given a set of
platforms H for an application a solving problem p is:

PP(a, p,H) =

{ |H|∑
i∈H

1
ei(a,p)

, if i is supported ∀i ∈ H

0, otherwise
(4)

where ei(a, p) is the efficiency. We have defined two effi-
ciencies. The first is based on time per invocation relative
to the theoretical lower limit, while the second is based on
GPU HBM data movement in bytes relative to the theoretical
lower limit as described in Figure 4. Performance efficiency
based on the time per invocation represents the ability of
the implementation to achieve better GPU architecture usage
while maintaining the same GPU HBM data movement. Notice
that using time per invocation, as an efficiency, gives a direct
insight that most research scientists also use as a performance
metric on several scientific domains. Additionally, the perfor-
mance efficiency based on the GPU HBM data movement
represents the implementation ability to incur minimal GPU
data movement for the application based on the theoretical
minimum calculated for the GPU kernel. This efficiency
highlights better data reuse or locality, and it could also be
seen as a lower bound that is architecture-independent.

Table IV shows the efficiencies for the baseline and the
optimized Jacobian and Residual kernels. Moreover,
we present the performance portability metric, PP, based on
Equation 4. We observe that the GPU optimizations to improve
data locality have a significant impact on the GPU HBM data
movement efficiency (eDM), going from 42-41% to 81-100%
on AMD MI250X and from 53-65% to 84-100% on NVIDIA
A100. It is clear that achieving eDM closer to 100% is a real-
istic goal for the Residual kernel that moves approximately
16× less data than the Jacobian kernel. Additionally, the
time per invocation efficiency (etime) goes from closer to 40%
on either kernel to 53-60% on one MI250X GCD and from

1e−01

1e+00

1e+01

1e+02

1e+03

1e+00 1e+01 1e+02

1.55 or 1.6 TB/s

Theoretical Min
Residual Kernel
2.3 GBytes

Theoretical Min
Jacobian Kernel
36.7 GBytes

Baseline Residual−NVIDIA
Optimized Residual−NVIDIA

Baseline Residual−AMD
Optimized Residual−AMD

Baseline Jacobian−NVIDIA

Optimized Jacobian−NVIDIA
Baseline Jacobian−AMD

Optimized Jacobian−AMD
A100 or 1GCD MI250X GPU HBM

T
im

e
 (

m
s
)

Bytes Moved (GBytes)

Fig. 5. Time-oriented Performance Portability Model for the baseline and optimized Jacobian and Residual kernels on NVIDIA A100 and AMD
MI250X GPUs. Note that the optimizations focused on data locality reduce the time per invocation and get both kernels closer to the application bound based
on GPU HBM data movement on both architectures.

39-62% to 79-88% on A100, with a significant increase on
NVIDIA GPU compared to AMD GPU that demonstrates
the compiler ability to get the best performance out of the
kernel once data locality has been improved. The performance
portability metric is also shown for the baseline and optimized
kernels computed with the results of both GPU architectures.
Overall, the performance portability metric increased by 20%
and 30-50% for time per invocation and the GPU HBM data
movement, respectively.

VII. DISCUSSION AND FUTURE WORK

GPU optimizations and portability are among the primary
challenges for research scientists looking to improve their
software and efficiently use the new GPU-accelerated super-
computing facilities. As we prepare our codes to transition
to new GPU architectures, evaluating performance or fully
exploiting GPUs from different vendors for relatively large
software applications is a path forward.

This paper explores GPU portable optimizations for MALI
(MPAS-Albany Land Ice), an ice-sheet model code that con-
sists of MPAS (Model for Prediction Across Scales) library,
and Albany, a finite element code to solve partial differential
equations. Like most ice-sheet models, most of the computa-
tional time relies on the velocity solver, part of the Albany
source code. Here, we have shown our optimization efforts on
the most expensive GPU operation in the solver and described
our efforts on performance portability for NVIDIA A100
GPUs and AMD MI250X GPUs.

To improve data locality and performance on GPUs, we
restructured the kernel computation by fusing loops, avoid-
ing branch divergence, using compile-time variables for the
loop condition expressions, and using local arrays instead of
accumulating the results directly on the global array.

Results show that our optimizations can improve kernel
performance, measured in time per invocation, compared to
the baseline implementation. Effectively implementing those
optimizations that work on two different GPU architectures but
with similar characteristics provides a step forward in writing
efficient GPU portable code. On NVIDIA A100 GPU, our
optimizations demonstrated a speedup of 3.3× and 2.2× for
the Jacobian and Residual kernels. On one GCD AMD
MI250X GPU, the performance gains were 2.7× and 3.5× for
both kernels. These gains are due mainly to improving data
locality and avoiding redundant loop operations compared to
the baseline implementation. On AMD GPUs, we also improve
performance by changing the Kokkos default values for launch
bounds, where setting the best workgroup size for these kernels
increased the performance between 1.17× and 1.54× on one
GCD AMD MI250X GPU.

In our work, we also introduce a time-oriented perfor-
mance portability model. It uses time per invocation and GPU
HBM data movement as efficiencies to analyze performance
portability across different GPUs. For memory-bound kernels,
time per invocation represents the code’s ability to use the
GPU resources efficiently, where its peak is the GPU HBM
bandwidth. On the other hand, GPU HBM data movement

demonstrates data reuse or data locality in the GPU kernel,
where a theoretical lower bound can be derived from the
array sizes and the number of reads/writes done during the
computation. Additionally, performance portability metrics can
be computed from those efficiencies across a diverse set
of GPU architectures. Our optimizations demonstrated an
increment between 20% and 50% on performance portability,
with a significant increase in the GPU HBM data movement
efficiency, indicating that our optimizations improved data
locality for both NVIDIA and AMD GPUs.

Future work will continue our efforts to optimize the veloc-
ity solver for GPUs and explore portability on INTEL GPUs.
We will use our performance portability model to evaluate
several kernels and to provide an insightful way to evaluate our
portability efforts on GPU-accelerating the code. Moreover,
we will conduct scalability studies and explore techniques
and new performance models to improve productivity and
portability for large-scale simulations in the context of ice-
sheet models.

ACKNOWLEDGMENT

The authors thank Trevor Hillebrand and Matt Hoffman
from Los Alamos National Laboratory for contributing Fig-
ure 1.

This research was supported by the U.S. Department of
Energy, Office of Science, SciDAC/Advanced Scientific Com-
puting Research under Award Number DE-AC02-05CH11231.
This research used resources of the National Energy Research
Scientific Computing Center, which is supported by the Office
of Science of the U.S. Department of Energy under Contract
No. DE-AC02-05CH11231, and resources of the Oak Ridge
Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of
the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.

This paper describes objective technical results and analysis.
Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the
U.S. Department of Energy or the United States Government.
Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology and Engineer-
ing Solutions of Sandia, LLC, a wholly owned subsidiary
of Honeywell International, Inc., for the U.S. Department
of Energy’s National Nuclear Security Administration under
contract DE-NA-0003525.

APPENDIX

The paper focuses on the performance-portable GPU opti-
mizations of the most time consuming kernels in the velocity
solver of an ice-sheet model code on NVIDIA A100 and AMD
MI250X. Here, we describe the hardware and software used
to GPU optimize the most time consuming kernels and the
methodology used to extract the data needed for GPU data
movement included in the paper.

Machines: Results presented in this paper were obtained on
a NVIDIA A100 GPU on Perlmutter at NERSC, and AMD

MI250X GPU on Frontier at OLCF. In all experiments, we
use only a single process running on one A100 GPU and one
GDC on an MI250X GPU.

In this section, we describe the command lines given to the
profiler to gather GPU metrics for the GPU data movement in
the figures described in the paper.

A. Perlmutter-NERSC

On Perlmutter-NERSC, NVIDIA Nsight Compute [32]
command line to gather GPU metrics for double precision is
depicted below:

nv-nsight-cu-cli -k <kernel_name>
--metrics "dram__bytes.sum" <exe> <param>

The metric dram__bytes.sum gives the value for GPU
data movement presented in the paper. Another NVIDIA
profiler to get the roofline plots and GPU data movement is
NVIDIA Nsight Compute by using the next command line:

srun -n 1 ncu -o output_file
--set full <exe> <params>

where results in the output file can be visualized using the
Nsight Compute API on your local machine.

As scientific applications are rather complex and launch
multiple kernels, we can also specify the kernel name for
NVIDIA Nsight Compute by including the next command:

--kernel-name-base=demangled
-k regex:"KernelName"

Finally, GPU data movement can be found in the Memory
Workload Analysis from the output report.

B. Frontier-OLCF

AMD-rocProf [33] is the profiler available on Frontier-
OLCF to collect GPU metrics. The command line used is:

rocprof -i input_file.txt --timestamp on
-o my_output.csv <exe> <params>

AMD ROCm Profiler needs an input file with the kernel name
and the metrics to be collected. An example of the input file
is shown below:

kernel: <kernel_name>
pmc : SQ_INSTS_VALU_ADD_F16 SQ_INSTS_VALU_MUL_F16
SQ_INSTS_VALU_FMA_F16 SQ_INSTS_VALU_TRANS_F16
pmc : SQ_INSTS_VALU_ADD_F32 SQ_INSTS_VALU_MUL_F32
SQ_INSTS_VALU_FMA_F32 SQ_INSTS_VALU_TRANS_F32
pmc : SQ_INSTS_VALU_ADD_F64 SQ_INSTS_VALU_MUL_F64
SQ_INSTS_VALU_FMA_F64 SQ_INSTS_VALU_TRANS_F64
pmc : SQ_INSTS_VALU_MFMA_MOPS_F16
SQ_INSTS_VALU_MFMA_MOPS_BF16
SQ_INSTS_VALU_MFMA_MOPS_F32
SQ_INSTS_VALU_MFMA_MOPS_F64
pmc : TCC_EA_RDREQ_32B_sum TCC_EA_RDREQ_sum
TCC_EA_WRREQ_sum TCC_EA_WRREQ_64B_sum
gpu: 0

To compute GPU data movement, we use the rocprof
metrics:

TCC_EA_WRREQ_64B, TCC_EA_WRREQ_sum,

TCC_EA_RDREQ_32B,
TCC_EA_RDREQ_sum.

Moreover, we compute GPU data movement with the next
formula:

GPU Bytes Moved = 64* TCC_EA_WRREQ_64B +
32*(TCC_EA_WRREQ_sum - TCC_EA_WRREQ_64B)
+ 32*TCC_EA_RDREQ_32B +
64*(TCC_EA_RDREQ_sum - TCC_EA_RDREQ_32B).

In the CSV report, we can also find the Architec-
tural and Accumulation Vector General-Purpose Registers as
arch_vgpr and accum_vgpr, respectively.

More information can be found here: https:
//docs.olcf.ornl.gov/systems/frontier user guide.html#
getting-started-with-the-rocm-profiler.

REFERENCES

[1] I. P. on Climate Change (IPCC), Ocean, Cryosphere and Sea Level
Change. Cambridge University Press, 2023, p. 1211–1362.

[2] M. J. Hoffman, M. Perego, S. F. Price, W. H. Lipscomb, T. Zhang,
D. Jacobsen, I. Tezaur, A. G. Salinger, R. Tuminaro, and L. Bertagna,
“Mpas-albany land ice (mali): a variable-resolution ice sheet model
for earth system modeling using voronoi grids,” Geoscientific Model
Development, vol. 11, no. 9, pp. 3747–3780, 2018. [Online]. Available:
https://gmd.copernicus.org/articles/11/3747/2018/

[3] T. Ringler, M. Petersen, R. L. Higdon, D. Jacobsen, P. W. Jones, and
M. Maltrud, “A multi-resolution approach to global ocean modeling,”
Ocean Modelling, vol. 69, pp. 211–232, 2013. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1463500313000760

[4] A. G. Salinger, R. A. Bartlett, A. M. Bradley, Q. Chen, I. P. Demeshko,
X. Gao, G. A. Hansen, A. Mota, R. P. Muller, E. Nielsen, J. T.
Ostien, R. P. Pawlowski, M. Perego, E. T. Phipps, W. Sun, and I. K.
Tezaur, “Albany: Using component-based design to develop a flexible,
generic multiphysics analysis code,” International Journal for Multiscale
Computational Engineering, vol. 14, no. 4, pp. 415–438, 2016.

[5] TOP 500, “Top 500 website,” https://www.top500.org/, 2024.
[6] C. F. Brædstrup, A. Damsgaard, and D. L. Egholm, “Ice-sheet modelling

accelerated by graphics cards,” Computers & Geosciences, vol. 72,
pp. 210–220, 2014. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S009830041400185X

[7] L. Räss, A. Licul, F. Herman, Y. Y. Podladchikov, and J. Suckale,
“Modelling thermomechanical ice deformation using an implicit
pseudo-transient method (fastice v1.0) based on graphical processing
units (gpus),” Geoscientific Model Development, vol. 13, no. 3, pp.
955–976, 2020. [Online]. Available: https://gmd.copernicus.org/articles/
13/955/2020/

[8] J. Watkins, M. Carlson, K. Shan, I. Tezaur, M. Perego, L. Bertagna,
C. Kao, M. J. Hoffman, and S. F. Price, “Performance portable
ice-sheet modeling with MALI,” The International Journal of High
Performance Computing Applications, vol. 37, no. 5, pp. 600–625,
2023. [Online]. Available: https://doi.org/10.1177/10943420231183688

[9] J. Kwack, J. Tramm, C. Bertoni, Y. Ghadar, B. Homerding, E. Rangel,
C. Knight, and S. Parker, “Evaluation of performance portability of
applications and mini-apps across amd, intel and nvidia gpus,” in 2021
International Workshop on Performance, Portability and Productivity in
HPC (P3HPC), 2021, pp. 45–56.

[10] N. A. Mehta, R. Gayatri, Y. Ghadar, C. Knight, and J. Deslippe, “Eval-
uating performance portability of openmp for snap on nvidia, intel, and
amd gpus using the roofline methodology,” in Accelerator Programming
Using Directives, S. Bhalachandra, S. Wienke, S. Chandrasekaran, and
G. Juckeland, Eds. Cham: Springer International Publishing, 2021, pp.
3–24.

[11] C. Bertoni, J. Kwack, T. Applencourt, Y. Ghadar, B. Homerding,
C. Knight, B. Videau, H. Zheng, V. Morozov, and S. Parker, “Per-
formance portability evaluation of opencl benchmarks across intel and
nvidia platforms,” in 2020 IEEE International Parallel and Distributed
Processing Symposium Workshops (IPDPSW), 2020, pp. 330–339.

[12] O. Antepara, S. Williams, H. Johansen, T. Zhao, S. Hirsch, P. Goyal,
and M. Hall, “Performance portability evaluation of blocked stencil
computations on gpus,” in Proceedings of the SC ’23 Workshops
of The International Conference on High Performance Computing,
Network, Storage, and Analysis, ser. SC-W ’23. New York, NY, USA:
Association for Computing Machinery, 2023, p. 1007–1018. [Online].
Available: https://doi.org/10.1145/3624062.3624177

[13] O. Antepara, S. Williams, S. Kruger, T. Bechtel, J. McClenaghan, and
L. Lao, “Performance-portable gpu acceleration of the efit tokamak
plasma equilibrium reconstruction code,” in Proceedings of the SC
’23 Workshops of The International Conference on High Performance
Computing, Network, Storage, and Analysis, ser. SC-W ’23. New York,
NY, USA: Association for Computing Machinery, 2023, p. 1939–1948.
[Online]. Available: https://doi.org/10.1145/3624062.3624607

[14] X. Sun and X. Lu, “The memory-bounded speedup model and its
impacts in computing,” Journal of Computer Science and Technology,
vol. 38, pp. 64–79, 2023.

[15] H. Carter Edwards, C. R. Trott, and D. Sunderland, “Kokkos: Enabling
manycore performance portability through polymorphic memory access
patterns,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,
pp. 3202–3216, 2014, domain-Specific Languages and High-Level
Frameworks for High-Performance Computing. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731514001257

[16] C. R. Trott, D. Lebrun-Grandié, D. Arndt, J. Ciesko, V. Dang, N. Elling-
wood, R. Gayatri, E. Harvey, D. S. Hollman, D. Ibanez, N. Liber, J. Mad-
sen, J. Miles, D. Poliakoff, A. Powell, S. Rajamanickam, M. Simberg,
D. Sunderland, B. Turcksin, and J. Wilke, “Kokkos 3: Programming
model extensions for the exascale era,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 805–817, 2022.

[17] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T.
Phipps, A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M.
Willenbring, A. Williams, and K. S. Stanley, “An overview of the
trilinos project,” ACM Trans. Math. Softw., vol. 31, no. 3, p. 397–423,
sep 2005. [Online]. Available: https://doi.org/10.1145/1089014.1089021

[18] J. K. Dukowicz, S. F. Price, and W. H. Lipscomb, “Consistent approxi-
mations and boundary conditions for ice-sheet dynamics from a principle
of least action,” Journal of Glaciology, vol. 56, no. 197, p. 480–496,
2010.

[19] C. Schoof and R. C. A. Hindmarsh, “Thin-Film Flows with
Wall Slip: An Asymptotic Analysis of Higher Order Glacier
Flow Models,” The Quarterly Journal of Mechanics and Applied
Mathematics, vol. 63, no. 1, pp. 73–114, 01 2010. [Online]. Available:
https://doi.org/10.1093/qjmam/hbp025

[20] H. Blatter, “Velocity and stress fields in grounded glaciers: a simple al-
gorithm for including deviatoric stress gradients,” Journal of Glaciology,
vol. 41, no. 138, p. 333–344, 1995.

[21] F. Pattyn, “A new three-dimensional higher-order thermomechanical
ice sheet model: Basic sensitivity, ice stream development, and
ice flow across subglacial lakes,” Journal of Geophysical Research:
Solid Earth, vol. 108, no. B8, 2003. [Online]. Available: https:
//agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2002JB002329

[22] K. Cuffey and W. Paterson, The Physics of Glaciers. 4th edition,
Butterworth-Heinemann, 2010.

[23] J. F. Nye, “The distribution of stress and velocity in glaciers and ice-
sheets,” in Proc. R. Soc. Lond. A, vol. 239, 1957, p. 113–133.

[24] I. K. Tezaur, M. Perego, A. G. Salinger, R. S. Tuminaro, and S. F. Price,
“Albany/felix: a parallel, scalable and robust, finite element, first-order
stokes approximation ice sheet solver built for advanced analysis,”
Geoscientific Model Development, vol. 8, no. 4, pp. 1197–1220, 2015.
[Online]. Available: https://gmd.copernicus.org/articles/8/1197/2015/

[25] R. Tuminaro, M. Perego, I. Tezaur, A. Salinger, and S. Price, “A
matrix dependent/algebraic multigrid approach for extruded meshes
with applications to ice sheet modeling,” SIAM Journal on Scientific
Computing, vol. 38, no. 5, pp. C504–C532, 2016. [Online]. Available:
https://doi.org/10.1137/15M1040839

[26] I. K. Tezaur, R. S. Tuminaro, M. Perego, A. G. Salinger, and
S. F. Price, “On the scalability of the albany/felix first-order
stokes approximation ice sheet solver for large-scale simulations
of the greenland and antarctic ice sheets,” Procedia Computer
Science, vol. 51, pp. 2026–2035, 2015, international Conference
On Computational Science, ICCS 2015. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S1877050915012752

[27] NERSC, “NERSC: Perlmutter gpu nodes,” 2024. [Online]. Available:
https://docs.nersc.gov/systems/perlmutter/architecture/

[28] NVIDIA, “NVIDIA A100 GPU architecture,” https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/
nvidia-ampere-architecture-whitepaper.pdf, 2020.

[29] OLCF, “OLCF: Frontier GPU nodes,” 2024. [Online]. Available:
https://docs.olcf.ornl.gov/systems/frontier\ user\ guide.html

[30] AMD, “AMD CDNA 2 architecture,” https://www.amd.com/system/
files/documents/amd-cdna2-white-paper.pdf, 2022.

[31] NVIDIA, “NVIDIA Nsight Systems documentation,” https://docs.nvidia.
com/nsight-systems/UserGuide/index.html, 2024.

[32] ——, “NVIDIA Nsight Compute documentation,” https://docs.nvidia.
com/nsight-compute/NsightCompute/index.html, 2024.

[33] AMD, “AMD rocProf documentation,” https://rocm.docs.amd.com/
projects/rocprofiler/en/latest/how-to/using-rocprof.html\#using-rocprof,
2024.

[34] E. Phipps and R. Pawlowski, “Efficient expression templates for oper-
ator overloading-basedautomatic differentiation,” in Recent Advances in
Algorithmic Differentiation, S. Forth, P. Hovland, E. Phipps, J. Utke,
and A. Walther, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg,
2012, pp. 309–319.

[35] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun.
ACM, vol. 52, no. 4, p. 65–76, apr 2009. [Online]. Available:
https://doi.org/10.1145/1498765.1498785

[36] S. Williams, “Auto-tuning performance on multicore computers,” https:
//www2.eecs.berkeley.edu/Pubs/TechRpts/2008/EECS-2008-164.pdf,
2008.

[37] S. Pennycook, J. Sewall, and V. Lee, “Implications of a metric for
performance portability,” Future Generation Computer Systems, vol. 92,
pp. 947–958, 2019. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0167739X17300559

[38] S. J. Pennycook and J. D. Sewall, “Revisiting a metric for performance
portability,” in 2021 International Workshop on Performance, Portability
and Productivity in HPC (P3HPC), 2021, pp. 1–9.

