.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

S
20
& el
) <%
STITES O8>

Performance Tuning of Scientific
Codes with the Roofline Model

1:30pm
1:35pm
2:10pm
2:40pm
3:00pm
3:30pm
3:45pm
4:30pm
4:55pm

Introductions / Administration
Roofline Introduction

CARM / Energy / GPUs

Intel Advisor Installation
coffee break

ntroduction to Intel Advisor
Hands-on with Intel Advisor
HPC Application Studies
closing remarks / Q&A

all
SEIMNEIRAVIIETES
Aleksandar llic
Zakhar Matveev

Zakhar Matveev
al
Charlene Yan

al x L]

S

«| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introductions

S5, U.S. DEPARTMENT OF

) <%

Samuel Williams Aleksandar llic Charlene Yang

Computational Research Division Institute of Systems and Computer NERSC

Lawrence Berkeley National Lab Engineering, Portugal Lawrence Berkeley National Lab
Zakhar Matveev Kiril Rogozhin

Intel Corporation Intel Corporation

mailto:SWWilliams@lbl.gov
mailto:TKoskela@lbl.gov
mailto:aleksandar.ilic@inesc-id.pt
mailto:zakhar.a.matveev@intel.com
mailto:kirill.rogozhin@intel.com

.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Materials:

USB / Downloads

>
]

«| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

more Roofline at SC’18...

P3HPC Friday “An Empirical Roofline Methodology for Quantitatively
Workshop 8:30am Assessing Performance Portability”, Yang, Gayatri, Kurth,
D174 Basu, Ronaghi, Adetokunbo, Friesen, Cook, Doerfler, Oliker,

Deslippe, Williams

.| BERKELEY LAB

EEE

http://bit.ly/sc17-eval

>
]

«| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Introduction to the
Roofline Model

Samuel Williams

Computational Research Division
Lawrence Berkeley National Lab

mailto:SWWilliams@lbl.gov

S

«| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

S5, U.S. DEPARTMENT OF

5 %
e\ 9
‘/4\ <%

Acknowledgements

= This material is based upon work supported by the Advanced Scientific Computing Research Program
in the U.S. Department of Energy, Office of Science, under Award Number DE-AC02-05CH11231.

» This material is based upon work supported by the DOE RAPIDS SciDAC Institute.

= This research used resources of the National Energy Research Scientific Computing Center (NERSC),
which is supported by the Office of Science of the U.S. Department of Energy under contract DE-AC02-
05CH11231.

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Background

Why Use Performance Models or Tools?

= |dentify performance bottlenecks
= Motivate software optimizations

= Determine when we’re done optimizing

« Assess performance relative to machine capabilities
« Motivate need for algorithmic changes

* Predict performance on future machines / architectures

« Sets realistic expectations on performance for future procurements

« Used for HW/SW Co-Design to ensure future architectures are well-suited for the
computational needs of today’s applications.

= A
: P L

BERKELEY LAB

Performance Models

= Many different components can contribute to kernel run time.
= Some are application-specific, and some architecture-specific.

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. ...

10

Performance Models

= Can't think about all these terms all the time for every application...

Computational _________ o ____

Complexity ~~ #FP operations Flop/s !

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. ...

11

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s

Cache data movement Cache GB/s

DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
Depth OMP Overhead

MP| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap
... #MPI Wait's.. Network Latency. | ...

Culler, et al, "LogP: a practical model of parallel computation”,

CACM, 1996. 12

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

#FP operations Flop/s
Cache data movement Cache GB/s
DRAM data movement DRAM GB/s
PCle data movement PCle bandwidth
______________ Depth. OMP Overhead ____
" MPI Message Size Network Bandwidth "
' MPI Send:Wait ratio Network Gap

.. l o #MPI Wait's Network Latency

Alexandrov, et al, "LogGP: mcorporatlng-lorrg-messagesmto --------------------------- g
the LogP model - one step closer towards a realistic model for 13
parallel computation”, SPAA, 1995.

Performance Models

= Because there are so many components, performance models often
conceptualize the system as being dominated by one or more of these
components.

- - - O B B S EEE EEE EEE EEE EEE SEE SEE EEE S SEE EEE SEE SEE BEE SEE SEE BEm EEE SEE BEm EEm SEm BEe S BEe B S E

] #FP operations Flop/s
'Cache data movement Cache GB/s
DRAM data movement DRAM GB/s |
PCle data movement PCie bandwidth
Depth OMP Overhead
MPI| Message Size Network Bandwidth
MPI| Send:Wait ratio Network Gap

... #MPI Wait's.. Network Latency. ...

Williams et al, "Roofline: An Insightful Visual Performance
Model For Multicore Architectures”, CACM, 20009.

y Roofline
: Model

15

.| BERKELEY LAB

EEE

Roofline Model:

Arithmetic Intensity and Bandwidth

Performance Models / Simulators

= Historically, many performance models and simulators tracked time to
predict performance (i.e. counting cycles)

= The last two decades saw a number of latency-hiding techniques...

« Out-of-order execution (hardware discovers parallelism to hide latency)
 HW stream prefetching (hardware speculatively loads data)
« Massive thread parallelism (independent threads satisfy the latency-bandwidth product)

= ... resulted in a shift from a latency-limited computing regime to a
throughput-limited computing regime

_— A
- Y

BERKELEY LAB

Roofline Model

°
®
B
B
{l
®

& crd.lbl.gov (@] ﬁ g R

= Roofline Model is a throughput- Py

COMPUTATIONAL RESEARCH
BERKELEY LAB

oriented performance model...

CRD A PERFORMANCE AND ALGORITHMS RESEARCH STAFF RESEARCH PUBLICATIONS
—

Home » Performance and Algorithms Research » Research » Roofline

 Tracks rates not times

Performance and Algorithms Research

 Augmented with Little’s Law

g ovance Roofline Performance Model

ALGORITHMS

RESEARCH Roofline is a visually intuitive performance model used to bound the performance of various numerical methods and operations running on
— * . Ragearch i or p Rather than simply using percent-of-peak estimates, the model can be used to
CO n C u rre n Cy — a e n Cy a n W I T assess the quality of attained performance by combining locality, idth, and different izati i into a single
performance figure. One can examine the resultant Roofline figure in order to determine both the implementation and inherent performance
BeBOP limitations.
EDGAR
. . GRS Arithmetic Intensity
. I n d e e n d e n t Of I SA a n d a rC h I te Ct u re a I I e S HPGMG The core parameter behind the Roofline model is Arithmetic Intensity. Arithmetic Intensity is the ratio of total floating-point operations to
Roofline total data movement (bytes). A BLAS-1 vector-vector increment (x[i[+=y[i]) would have a very low arithmetic intensity of 0.0417 (N FLOPS
SciDAC /24N Bytes) and would be independent of the vector size. Conversely, FFT's perform 5*N*logN flops for a N-point double complex
TOP500 transform. If out of place on a write allocate cache architecture, the transform would move at least 48N bytes. As such, FFT's

to CPUs, GPUs, Google TPUs', etc...)

1Jouppi et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, ISCA, 2017.

18

Previous Projects

would have an arithmetic intensity of 0.104*logN and would grow slowly with data size. Unfortuantely, cache capacities would
limit FFT arithmetic intensity to perhaps 2 flops per byte. Finally, BLAS3 and N-Body Particle-Particle methods would have
arithmetic intensity grow very quickly.

Facebook 0.1-1.0 flops per byte Typically < 2 flops per byte 0O(10) flops per byte
q A A A
S r A} r N 7 A}
Google+
|8
Twitter

SpMV

BLAS1,2 Particle
ils (PDE: Methods
Stencils (| s) FFTs, I
Lattice Boltzmann Spectral Methods Linear Algebra
N Melhodsj N L (BLAS3) ,
Y Y Y
o(1) O(log(N)) O(N)

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline

>

&
frfrrrerenr |

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)
"#FP ops / Peak GFlop/s
Time = max <
_#Bytes / Peak GB/s

19

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)

Time "1/ Peak GFlop/s
#FP ops MaX
P _#Bytes | #FP ops / Peak GB/s

20

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)

_
#FP ops . Peak GFlop/s
Time _(#FP ops / #Bytes) * Peak GB/s

21

(DRAM) Roofline

= One could hope to always attain
peak performance (Flop/s)

= However, finite reuse and
bandwidth limit performance.

CPU

(compute, flop/s)

DRAM Bandwidth

= Assuming perfect overlap of | (©B/s)
communication and computation... DRAM
(data, GB)
Peak GFlop/s

GFlop/s = min=<

_Al * Peak GB/s

Note, Arithmetic Intensity (Al) = Flops / Bytes (as presented to DRAM)

22

(DRAM) Roofline

= Plot Roofline bound using
Arithmetic Intensity as the x-axis

* Log-log scale makes it easy to
doodle, extrapolate performance
along Moore’s Law, etc...

= Kernels with Al less than machine
balance are ultimately DRAM
bound (we’ll refine this later...)

Peak Flop/s

Attainable Flop/s

23

Roofline Example #1

= Typical machine balance is 5-10

flops per byte...
« 40-80 flops per double to exploit compute capability Peak Flop/s
« Artifact of technology and money "
* Unlikely to improve §
T
Q@
O
c
= Consider STREAM Triad... E
#pragma omp parallel for
for(i=0;i<N;i++){
z[i] = x[i] + alpha*Y[i];
}
. _ 0.083
* 2flops per iteration Arithmetic Intensity (Flop:Byte)

« Transfer 24 bytes per iteration (read X][i], Y[i], write Z[i])
- Al =0.083 flops per byte == Memory bound

— A
24 rr/r>| H

BERKELEY LAB

Roofline Example #2

= Conversely, 7-point constant

coefficient stencil...
« 7 flops Peak Flop/s
« 8 memory references (7 reads, 1 store) per point "
« Cache can filter all but 1 read and 1 write per point E—
Al =0.44 flops per byte == memory bound, ZJ OQ’\% 7 Gflop/s <Al DRAM GB/s
but 5x the flop rate 'c.é :
#pragma omp parallel for f§ :
for(k=1;k<dim+1;k++){ < | 7-point
for(j=1;j<dim+1;j++){ : :
for(i=1;i<dim+l;i++){ + Stencil
new[k][j1[i] = -6.0*old[k 1[j I[i] :
+ old[k 1[j 1[i-1] ! S
e — G o4
old[k 1[j+1][1 Arithmetic Intensity (Flop:Byte)

old[k-11[7 1I[i
old[k+1]1[7 1I[i

— A
25 rr/r>| H

BERKELEY LAB

Why is Roofline Useful?

* |magine a mix of loop nests

= Flop/s alone may not be useful in
deciding which to optimize first

Flop/s

Kernel (or apps)

26

Why is Roofline Useful?

= We can sort kernels by Al ...

Attainable Flop/s

Arithmetic Intensity (Flop:Byte)

27

Why is Roofline Useful?

= We can sort kernels by Al ...

,T
= ... and compare performance
relative to machine capabilities Peak Flop/s

5

LL

o

s

s

Z

28 2l

BERKELEY LAB

Why is Roofline Useful?

= Kernels near the roofline are

making good use of |
computational resources Peak Flop/s
o kernels can have low performance 2

(Gflop/s), but make good use of a =

machine =

)

o kernels can have high performance S

(Gflop/s), but make poor use of a <

machine

29 oryf

BERKELEY LAB

.| BERKELEY LAB

EEE

Refining Roofline:
Memory Hierarchy & DLP

Hierarchical Roofline

= Processors have multiple levels of
memory/cache
* Registers
« L1,L2, L3 cache
« MCDRAM/HBM (KNL/GPU device memory)
 DDR (main memory)

« NVRAM (non-volatile memory)
= Applications have locality in each level

= Unique data movements imply unique Al’'s

= Moreover, each level will have a unique
bandwidth

= A
31 rr/r>| "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple i
Al's and multiple bounds (flops, L1, L2, ... %
DRAM) .. -% DDR Bound
= DDR AI*"BW <
. ... performance is bound by the < MICDRAM AI"BW
minimum

= A
32 rr/r>| "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...
= Measure bandwidth . Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... IS
DRAM)... 5

. ... performance is bound by the <
minimum DDR bottleneck

pulls performance
below MCDRAM
Roofline

etic Intensity (Flop:Byte)

- A
33 r:}l "“|

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of
Rooflines...

= Measure bandwidth Peak Flop/s

= Measure Al for each level of memory @
« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... S MCDRAM bound
DRAM)... 5 MCDRAM AIBW <
. ... performance is bound by the <
minimum

- A
34 Py

BERKELEY LAB

Hierarchical Roofline

= Construct superposition of

Rooflines... |

= Measure bandwidth Peak Flop/s

= Measure Al for each level of memory @

« Although an loop nest may have multiple %
Al's and multiple bounds (flops, L1, L2, ... IS
DRAM)... s

- ... performance is bound by the < S bottioncok pulls
minimum performance below

DDR Roofline
Arithmetic Intensity (Flop:Byte

= A
35 Py

BERKELEY LAB

Data, Instruction, Thread-Level Parallelism...

= \We have assumed one can attain
peak flops with high locality.

* |n reality, we must ... Peak Flop/s

« Use special instructions (e.g. FMA)
* Vectorize loops (16 flops per instruction)
 Hide FPU latency

(unrolling, out-of-order execution)

Attainable Flop/s

« Use all cores & sockets

= Without these, ...

« Peak performance is not attainable

Lack of DLP pulls
performance

below DDR

Roofline

Arithmetic Intens

« Some kernels can transition from

= A
36 rr/r>| "“|

BERKELEY LAB

Data, Instruction, Thread-Level Parallelism...

= \Ne have assumed one can attain

peak flops with high locality. |
= In reality, we must ...
» Use special instructions (e.g. FMA) S
* Vectorize loops (16 flops per instruction) E,
 Hide FPU latency ‘E
. . = No vectorization
(unrolling, out-of-order execution) < o,
« Use all cores & sockets / Lack of DLP pulls
. performance
below DDR
- WIthOUt these’ o Arithmetic Intens eR:))ofline

« Peak performance is not attainable
« Some kernels can transition from

— A
. Y

BERKELEY LAB

.| BERKELEY LAB

EEE

Roofline Model:

Roofline-driven Performance Optimization

Roofline-Driven Performance Optimization

= Broadly speaking, there are three
approaches to improving
pe rformance: Peak Flop/s

Attainable Flop/s

39

Roofline-Driven Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

Attainable Flop/s

40

Roofline-Driven Performance Optimization

= Broadly speaking, there are three
approaches to improving
performance: Peak Flop/s

= Maximize in-core performance
(e.g. get compiler to vectorize)

= Maximize memory bandwidth
(e.g. NUMA-aware, unit-stride)

Attainable Flop/s

41

Roofline-Driven Performance Optimization

= Broadly speaking, there are three

approaches to improving I
performance: Peak Flop/s
= Maximize in-core performance 8
(e.g. get compiler to vectorize) %
= Maximize memory bandwidth < <
(e.g. NUMA-aware, unit stride) < 2
= Minimize data movement ; S X
(e.g. CaChe blOCklng) Arithmetic Intensity (Flop:Byte)

42

.| BERKELEY LAB

EEE

Roofline In Practice:

Evolution at LBL / NERSC

.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Step 1:

Machine Characterization

Machine Characterization

Cori / KNL

= “Theoretical Performance”

numbers can be highly optimistic... .

« Pin BW vs. sustained bandwidth dra

. TurboMode / Underclock for AVX e o | SUMMItDev / 4GPUs

« compiler failings on high-Al loops. o oot Atthury
= | BL developed the Empirical

Roofline Toolkit (ERT)...

« Characterize CPU/GPU systems

 Peak Flop rates

« Bandwidths for each level of memory o

« MPI+OpenMP/CUDA == multiple GPUs

"
b
rrrrrrr ‘ |

https://crd.Ibl.gov/departments/computer-science/PAR/research/roofline/
45

BERKELEY LAB

https://crd.lbl.gov/departments/computer-science/PAR/research/roofline/

.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Step 2:

Application Characterization

Measuring Al

» To characterize execution with Roofline we need...

o Time

o Flops (=> flop’s / time)

o Data movement between each level of memory (=> Flop’s / GB’s)
= \We can look at the full application...

o Coarse grained, 30-min average
o Misses many details and bottlenecks

= or we can look at individual loop nests...

o Requires auto-instrumentation on a loop by loop basis
o Moreover, we should probably differentiate data movement or flops on a core-by-core basis.

"
b
rrrrrrr ‘ |

BERKELEY LAB

How Do We Count Flop’s?

Manual Counting Perf. Counters Binary Instrumentation

» Gothrueachloopnestand = Read counter before/after = Automated inspection of
count the number of FP v More Accurate assembly at run time
operations v Low overhead (<%)==can ¥ MostAccurate

v Works best for deterministic run full MPI applications v FMA-, VL-, and mask-aware
loop bounds v' Can detect load imbalance v Can count instructions by

v or parameterize by the

number of iterations X Requires privileged access Class/type
(recorded at run time) X Requires manual v' Can detect load imbalance
X Not scalable instrumentation (+toverhead) v° Can include effects from
or full-app characterization non-FP instructions
X Broken counters = garbage v° Automated application to
X May not differentiate multiple loop nests
FMADD from FADD X >10x overhead (short runs /
X Noinsightintospecial reducedconcurrency)

~
&
rrrrrrr H

pipelines 48

BERKELEY LAB

How Do We Measure Data Movement?

Manual Counting Perf. Counters Cache Simulation

» Gothru each loop nestand = Read counter before/after = Build a full cache simulator
estimate how many bytes v Applies to full hierarchy (L2, driven by memory
will be moved DRAM. addresses

= Use a mental model of v Much more Accurate v" Applies to full hierarchy and
caches | v Low overhead (<%) == can multicore |

v" Works best for simple loops run full MPI applications v' Can detect load imbalance

that stream from DRAM

- v Can detect load imbalance ¥ Automated application to
istenalls, FEIS, spare, .. X Requires privileged access multiple loop nests
X N/A for complex caches | X Ignores prefetchers
X Not scalable X Requires manual
instrumentation (+overhead) X >10xoverhead (shortruns /
or full-app characterization reduced concurrency)

- A
49 Py

BERKELEY LAB

Previously Cobbled Together Tools...

= Use tools known/observed to work on NERSC’s _

Login

Site Map | My NERSC | < Share

: R
O rI Powering Scientific Discovery Since 1974
] = = owm

HOME ABOUT SCIENCEATNERSC ~ SYSTEMS WiULIN:N NEWS GPUBLICATIONS R&D EVENTS LIVESTATUS TIMELINE

Home » For Users » Application Performance » Measuring Arithmetic Intensity

FOR USERS

« Used Intel SDE (Pin binary iInstrumentation + oyl MEASURING ARITHMETIC INTENSITY

My NERSC
[Getting Started Avithmetic intensity is a measure of floating-point operations (FLOPs) performed by a given code (or code section) relative to the
Connecting to NERSC amount of memory accesses (Bytes) that are required to support those operations. It is most often defined as a FLOP per Byte
Accounts & Allocations ratio (F/B). This note provides a for arithmetic intensity using Intel's Software Development
R Emulator Toolkit (SDE) and VTune Amplifier (VTune) tools. A tutorial on using SDE on Edison can be found here, and a tutorial

Storage & File Systems
Application Performance

NESAP Historically, processor manufacturers have provided counters for FLOPs and/or Bytes and profiling tools to support the F/B

. Application Porting and calculation. Some modern processors such as Intel's vy Bridge (used in Edison) and Haswell (used in Cori Phase 1) do not
i provide counters for FLOPs. However, Intel's SDE can be used to count floating-point instructions in addition to core-level
IXPUG memory accesses, and VTune can be used to count data accesses to the uncore (off-chip DRAM DIMMs).

Performance and Debugging
Tools.

on using VTune can be found here. This method can also be used to determine arithmetic intensity for use in the Roofline
Performance Model.

The SDE dynamic instruction tracing capability, and in particular the mix histogram tool, captures dynamic instructions executed,

Measuring Arithmetic instruction length, instruction category and ISA extension grouping. Intel has developed a methodology for calculating FLOPs
with SDE. In general the following uses the method “Instructions to Count Unmasked FLOP" from Intel, which is applicable for
Data & Analytics

Edison and Cori Phase 1.

Job Logs & Statistics
Training & Tutorials This application note provides additional instruction on how to only capture traces around certain key segments of a code. This is
Software critical for real applications as both SDE and VTune collect traces that can use large amounts of disk space if tracing is enabled for
L) Policies more than a few minutes. And maybe more importantly, post-processing the traces can take an intractable amount of time.
» Accurate measurement of Flop’s (HSW) and
NERSC Users Group An example command line for SDE is:
Help

Staff Blogs i $ srun -n 4 -c 6 sde -ivb -d -iform 1 -omix my_mix.out -i -global_region -start_ssc_mark 111:repeat -stop_ssc_mark 222:repeat -;

DRAM data movement (HSW and KNL

» Used by NESAP (NERSC KNL application
readiness project) to characterize apps on Cori...

.

-d specifies to only collect dynamic profile information

-iform 1 turns on compute ISA iform mix

-omix specifies the output file (and turns on -mix)

i specifies that each process will have a unique file name based on process ID (needed for MPI)

~global_region will include any threads spawned by a process (needed for OpenMP)

An example command line for Vune is:

http.//www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

NERSC is LBL’s production computing division
CRD is LBL’'s Computational Research Division S Sy
NESAP is NERSC’s KNL application readiness project 50 |
LBL is part of SUPER (DOE SciDAC3 Computer Science Institute) BERKELEVEAR

>

http://www.nersc.gov/users/application-performance/measuring-arithmetic-intensity/

* Includes Roofline Automation...
v Automatically instruments applications

(one dot per loop nest/function)

v" Computes FLOPS and Al for each 1% Memory-b
funCtiOn (CARM) W & T2z B @ O StartSurveyAnalysis | v| & @

Welcome | €000 X Start Survey Analysis
Start Trip Counts and FLOP Analysis

j) csaine Gex-
AVX_5 1 2 S u p po rt th at I n CO rpo rates m aS kS FILTER:E; Start Memory Access Patterns Analysis Threads v|| Loads and stores ~
B Summary % Survey & Start Dependencies Analysis /

AN

v" Integrated Cache Simulator’ B oo riors, I (G s vesnaroon
1000 f 8 £--8 & ST
100

M Fean
R Rt ":f»}@ S(’uw Kk
OO‘ e 'Q‘,r ‘1

(hierarchical roofline / multiple Al’s)

14 Y
0-1"\
. 0.01 - T T T T T T T T
0.001 0.01 0.1 1 10 100 1000 10000 1.0e+5
v Automatically benchmarks target system | setinnate
.y [Source ITopDown I Code Analytics | Assemnbly |9Recommendations & Why No Vectorization?
(calculates ceilings)
Address | Line Assembly Total Time % Self Time
\/ [function) 0x4107d0 Block 1: 146029716
0x4107d0 492 9 0.020 0.020:
Full integration with existing Advisor SO i s
0x4107d4 492 sub $0x210, %rsp

capabilities
http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

'Experimental Feature, the look and feel and exact behavior is S
subject for change 51 /\I

BERKELEY LAB

A
I

http://www.nersc.gov/users/training/events/roofline-training-1182017-1192017

.| BERKELEY LAB

EEE

Hierarchical Roofline vs.
Cache-Aware Roofline

...understanding different Roofline
formulations in Intel Advisor

There are two Major Roofline Formulations:

= Hierarchical Roofline (original Roofline w/ DRAM, L3, L2, ...)...

Williams, et al, “Roofline: An Insightful Visual Performance Model for Multicore Architectures”, CACM, 2009
Chapter 4 of “Auto-tuning Performance on Multicore Computers”, 2008
« Defines multiple bandwidth ceilings and multiple Al's per kernel

« Performance bound is the minimum of flops and the memory intercepts (superposition of original, single-metric Rooflines)

= Cache-Aware Roofline

 llic et al, "Cache-aware Roofline model: Upgrading the loft", IEEE Computer Architecture Letters, 2014
« Defines multiple bandwidth ceilings, but uses a single Al (flop:L1 bytes)

 As one looses cache locality (capacity, conflict, ...) performance falls from one BW ceiling to a lower one at constant Al

= Why Does this matter?

« Some tools use the Hierarchical Roofline, some use cache-aware == Users need to understand the differences
« Cache-Aware Roofline model was integrated into production Intel Advisor
« Evaluation version of Hierarchical Roofline! (cache simulator) has also been integrated into Intel Advisor

'Experimental Feature, the look and feel and exact behavior is S
subject for change 53 ,\I

BERKELEY LAB

A
I

Hierarchical Roofline

>
b
rrrrrrr ‘ |

Captures cache effects

Al is Flop:Bytes after being filtered by
lower cache levels

Multiple Arithmetic Intensities
(one per level of memory)

Al dependent on problem size
(capacity misses reduce Al)

Memory/Cache/Locality effects are
observed as decreased Al

Requires performance counters or
cache simulator to correctly measure Al

54

Cache-Aware Roofline

Captures cache effects

Al is Flop:Bytes as presented to the L1
cache (plus non-temporal stores)

Single Arithmetic Intensity

Al independent of problem size

Memory/Cache/Locality effects are
observed as decreased performance

Requires static analysis or binary
instrumentation to measure Al

BERKELEY LAB

Example: STREAM

= |1Al.. #pragma omp parallel for
. 2ﬂ0ps 'FOI"('I=0;'I<N;‘I++){

z[1] = X[1] + alpha*Y[i];

2 x 8B load (old) }
1 x 8B store (new)

= 0.08 flops per byte
= No cache reuse...

lteration i doesn’t touch any data associated with
iteration i+delta for any delta.

= ... leads to a DRAM Al equal to
the L1 Al

— A
55 r:>| ‘"'|

BERKELEY LAB

Example: STREAM

Hierarchical Roofline

Attainable Flop/s

i

! Peak Flop/s

Performa/nce is bound'to
the/minimum/of the 'two
Intercepts.--

Al * L1/ GB/s
Alpram *DRAMIGB/s

«— Multiple Al’s....

: 1) Flop:DRAM bytes

. 2) Flop:L1 bytes (same)

' >
0.083

Arithmetic Intensity (Flop:Byte)

Cache-Aware Roofline

Attainable Flop/s

i

! Peak Flop/s

Obsernved performance
IS gorrelated with DRAM
bandwidth

«—— Single Al based on flop:L1 bytes

' >
0.083

Arithmetic Intensity (Flop:Byte)

>
b
rrrrrrr ‘ |

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

0 |_1 Al #pragma omp parallel for

for(k=1;k<dim+1;k++){

* Tflops for(j=1;j<dim+l;j++){

7 x 8B load (old) for(i=1;i<dim+1;i++){
new[k][j][1] = -6.0%old[k 1[j J[1]
1 x 8B store (new) 4 old[k 1[5 J[i-1]
= 0.11 flops per byte old[k 1[j J[i+1]
some compilers may do register shuffles to reduce the old[k 1[J-11[1]
number of loads. old[k 1[j+11[1 1]
old[k-1][J 1[1]

= Moderate cache reuse... old[k+11[j 1[i 1;

old[k][j][1+1] is reused on next iteration of i.
old[k] [J+1][1] is reused on next iteration of j.
old[k+1][j][1] is reused on next iterations of k.

= ... leads to DRAM Al larger than
the L1 Al

")
57 l:r—r>| "“|

BERKELEY LAB

Example: 7-point Stencil (Small Problem)
Hierarchical Roofline Cache-Aware Roofline

! ! Peak Flop/s Peak Flop/s
2 : ; 2
a ! ! a
o : ! O
T ! T
ko) , i ko)
'cgs : ' Performance bound is 'cgs
© : | sthe minimum/of the 'two ©
< . <
: Multiple Al’s....
«— 1) flop:DRAM ~ 0.44
% ' 2) flop:L1 ~ 0.11
9 ' ' > >
0.11 0.44 0.11
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

_— A
- Y

BERKELEY LAB

Example: 7-point Stencil (Small Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s

Peak Flop/s

Obseweddnce

is bet}ve/en L4 and DRAM lines
some)cachelocality)

Berformance boundis
the/minimum)of the 'two

Attainable Flop/s
Attainable Flop/s

: Multiple Al’s....

«— 1) flop:DRAM ~ 0.44
— 2) flop:L1 ~0.11
0.11 0.44

Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

>

= A
- Py

BERKELEY LAB

Example: 7-point Stencil (Large Problem)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s

Peak Flop/s

Obseweddnce

is closef to DRAM line
7 :
lessicachelocality)

Capacity misses/reduce
BRAM Aland performance

. Multiple Al’s....
'!«—— 1) flop:DRAM ~ 0.20

Attainable Flop/s
Attainable Flop/s

Single Al based on flop:L1 byt
& — 2) flop:L1 ~ 0.11 hgie Al based on Hiop-L1 bytes
I > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
60 rr/r>| ""|

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
1 1

Peak Flop/s Peak Flop/s

Obseweddnce

is closef to DRAM line
7 :
lessicachelocality)

: Actual observed performance
_ CI) is/tied to'the bottlenecked resource

Attainable Flop/s
Attainable Flop/s

and/can be'well belowacache
Roofline/(e/g. L1).

0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
61 rr/rml "“|

BERKELEY LAB

Example: 7-point Stencil (Observed Pert.)

Hierarchical Roofline Cache-Aware Roofline
1 1

! Peak Flop/s ! Peak Flop/s
2 : n | /
a ! a !
O ' [e) l
LL : ™ I
= i = Observedfperformance
3 . © is clogef’to DRAM line
© . /Actualobserved performance ® lessicache)locality)
< 7’ is'tiedto'the bottlenecked resource <
. [and/can be'well belowa/cache
 Roofline/(e.g, L1). Single Al based on flop:L1 bytes
I > >
0.11 0.20
Arithmetic Intensity (Flop:Byte) Arithmetic Intensity (Flop:Byte)

= A
62 rr/r>| "“|

BERKELEY LAB

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Questions?

.| BERKELEY LAB

EEE

http://bit.ly/sc17-eval

SH%% U.S. DEPARTMENT OF

i BERKELEY LAB) ENERGY

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Backup

>
]

«| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

Refining Roofline:
NUMA

NUMA Effects

= Cori's Haswell nodes are built
from 2 Xeon processors (sockets)
 Memory attached to each socket (fast) Peak Flop/s

* Interconnect that allows remote memory
access (slow == NUMA)

* Improper memory allocation can result in
more than a 2x performance penalty

Attainable Flop/s

CPUO = CPU1

cores 0-15 cores 16-31

~50GB/s ~50GB/s

DRAM| |DRAM

")
68 rr/r—r>| ‘"'|

BERKELEY LAB

.| BERKELEY LAB

EEE

Refining Roofline:

Instruction Issue Bandwidth

Superscalar vs. Instruction mix

= Define in-core ceilings based on

instruction mix... I
= e.g. Haswell Peak Flopls ., ep

* 4-issue superscalar ?Zz 25% FP (75% int)
« Only 2 FP data paths ° 12% FP (88% int)
* Requires 50% of the instructions to be FP 2

to get peak performance g

>
70 2l

BERKELEY LAB

Superscalar vs. Instruction mix

= Define in-core ceilings based on

instruction mix... I
" e.q. Haswell Peak Flop/s 100% FP
e 4-issue superscalar ?ZL 50% FP (50% int)
* Only 2 FP data paths ° 25% FP (75% int)
* Requires 50% of the instructions to be FP 2
to get peak performance g
» e.g. KNL
e 2-ISSue superscalar >
2 FP data paths
« Requires 100% of the instructions to be
. FPtogetpeak performance
71 oryf

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on

instruction mix... I
" e.q. Haswell Peak Flop/s 100% FP
e 4-issue superscalar ?ZL 50% FP (50% int)
* Only 2 FP data paths ° 25% FP (75% int)
* Requires 50% of the instructions to be FP 2
to get peak performance g
» e.g. KNL
e 2-ISSue superscalar >
2 FP data paths
« Requires 100% of the instructions to be
. FPtogetpeak performance
72 oryf

BERKELEY LAB

Superscalar vs. instruction mix

= Define in-core ceilings based on

instruction mix... |
= e.g. Haswell
e 4-issue superscalar S .
- \ |
* Only 2 FP data paths ° & 25% FP (75% int)
* Requires 50% of the instructions to be FP ‘E
to get peak performance g
-FP instructi
u eg KNL sr;ToninstrlchS:titl: ilsosnuse
, bandwidth and pull
e 2-ISSue superscalar Arithmetic Intensity(_ Performance below

Roofline

2 FP data paths

« Requires 100% of the instructions to be
FP to get peak performance

= A
- Py

BERKELEY LAB

.| BERKELEY LAB

EEE

Refining Roofline:

Compulsory, Capacity, and Conflict misses

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses
Peak Flop/s
D
o
[e)
L
o
@)
= <
£ No vectorizafjo
< o
>
o
S
©)
o >
Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses
75]

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s
can lower Al o FMA

\o
0‘2)
QQ~
Q

ate
Al

Attainable Flop/s
Y

No vectdrigafjoZ

()

+Write Al
Compuls

Arithmetic Intensity (Flop:Byte)
Al = #Flop’s
Compulsory Misses + Write Allocates

= A
76 Py

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using

only compulsory cache misses |
= However, write allocate caches Peak Flop/s
can lower Al 8 o FMA
. . TH
= Cache capacity misses can have o
© ..G_-J —
a huge penalty E No vectcri:gatloé’
< <=E-—§-
2|2
AR
Arithmetic Intensity (Flop:Byte)
Al = #Flop's
~ Compulsory Misses + Write Allocates + Capacity Misses
77 oryf

BERKELEY LAB

Locality Walls

= Naively, we can bound Al using
only compulsory cache misses

= However, write allocate caches Peak Flop/s

can lower Al g . 0 FMA
= Cache capacity misses can have E <5

a huge penalty g VL : {
> Compute bound became A 2 R

memory bound

Arithmetic |
_ #Flop’s
~ Compulsory Misses + Write Allocates + Capacity Misses

Al

~ A
78 r:'}l ‘||||

BERKELEY LAB

.| BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

LIKWID:

Performance Counters

LIKWID

= LIKWID provides easy to use wrappers for measuring performance

counters...

Works on NERSC production systems

Distills counters into user-friendly metrics (e.g. MCDRAM Bandwidth)
Minimal overhead (<1%)

Scalable in distributed memory (MPI-friendly)

Fast, high-level characterization

No timing breakdowns

xX X N X X X

Suffers from Garbage-in/Garbage Out
(i.e. hardware counter must be sufficient and correct)

https://qgithub.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugqging-tools/likwid

= A
80 r:':}l "“|

BERKELEY LAB

https://github.com/RRZE-HPC/likwid
http://www.nersc.gov/users/software/performance-and-debugging-tools/likwid

