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Abstract—Bioinformatics workloads differ significantly from
traditional scientific computing and AI workloads because they
consist primarily of integer-only operations and string compar-
isons rather than floating-point operations. The underlying algo-
rithms usually have low arithmetic intensity, irregular memory
access patterns, and non-deterministic workloads. Local Assem-
bly is an essential step in large-scale genome assembly software
and is typically implemented using de Bruijn graphs. This paper
examines the performance, portability, and productivity of a local
assembly GPU kernel from a metagenome assembly pipeline
implemented using hash table data structures on NVIDIA, AMD,
and Intel GPUs. We focus on the challenges of achieving portabil-
ity while maintaining performance for a complex bioinformatics
GPU kernel that relies on hardware-specific optimizations. In
this paper, we evaluate the local assembly kernel’s performance
and portability across different GPU architectures, identify
performance bottlenecks, and propose modifications in existing
tools and methods for performance modeling and analysis of
integer-heavy bioinformatics application kernels.

Index Terms—performance modeling, portability, genome as-
sembly, de Bruijn Graph, CUDA, HIP, SYCL

I. INTRODUCTION

The recent deluge of genomic sequencing data has led
bioinformatics workloads to be an increasingly important
sector in the field of scientific computing. Even with the
tremendous advancement in genome sequencing technolo-
gies in the past ten years, sequencing read lengths are still
significantly smaller than even a bacterial genome, and as
sequence length increases, accuracy tends to decrease [1]. As a
result, computational algorithms are required to reconstruct the
genome, and correct errors in reads through read consensus.
If the sequencing reads come from a well-studied organism,
reads can be aligned to a reference genome using a sequence
alignment algorithm, however, when the reference genomes
are unknown, genomes need to be constructed de novo. Such
techniques often rely on de Bruijn graph based methods [2, 3]
to discover contiguous pieces of the genome (contigs). These
methods involve connecting overlapping pieces of the genome
(input reads) to find the longest contiguous region of the DNA
that fulfills certain conditions.

Exascale Computing Project (17-SC-20-SC)

As open data becomes increasingly popular among scientists
to promote research reproducibility and integrity, it’s also
crucial to adapt bioinformatics workflows to various compu-
tational resources. The recent large-scale adoption of GPUs
for AI and scientific workloads has led to GPUs being the
dominant computing resource for large-scale computing. This
adds to the significance of exploring software portability across
GPUs from different vendors. Bioinformatics kernels are par-
ticularly challenging when it comes to portability because of
the peculiar characteristics that make them less amenable to
GPU offload, hence requiring hardware-specific optimizations
and frequent use of vendor-specific intrinsics [4, 5].

Alignment algorithms such as Smith-Waterman are typically
implemented as dynamic programming algorithms, which have
data dependencies in each iteration that limit the amount of
parallelism that can be used while also presenting a data access
pattern that does not allow much caching or memory coalesc-
ing on GPUs. The previous work on evaluating the portability
of a sequence alignment kernel [5] (another frequently used
bioinformatics kernel) focuses only on a dynamic program-
ming based alignment algorithm, which is quite different than
the local assembly kernel [5]. Local Assembly uses a de Bruijn
graph-based algorithm implemented as thousands of dynami-
cally allocated hash tables. While constructing hash tables can
be highly parallelized, the memory access pattern in a hash
table can be highly random, which leads to poor utilization of
much of the GPU’s memory subsystem. Similarly, the graph
traversal algorithms are forced to limit parallelism as relatively
short graph walks are faster if done serially.

Bioinformatics application kernels differ from traditional
scientific computing tasks, which rely heavily on floating-point
operations, because they rely primarily on integer operations
and string comparisons. Another challenge that plagues both
of the above mentioned bioinformatics kernels is that of large
memory requirements. GPUs typically have relatively smaller
main memory which limits the amount of work that can be
offloaded to the device, limiting the utilization of the large
number of computational units that GPUs offer.

In this paper, we assess the performance portability of the
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local assembly GPU kernel from MetaHipMer [4], which
is a widely used large scale metagenome assembler [6].
MetaHipmer utilizes GPUs and can scale to thousands of
nodes. For this paper we focus on the local assembly phase of
the MetaHipmer software pipeline and study the performance
and portability of this kernel on NVIDIA Ampere GPU
(A100), AMD Instinct GPU (MI250X), and Intel Data Center
Max 1550 GPU (MAX1550). The contributions in this paper
include:

• Porting the optimized CUDA code for local assembly
kernel to HIP and SYCL. We demonstrate that algorithms
like the local assembly can have better code and perfor-
mance portability if programming models provide a fine-
grained way of controlling GPU threads and have more
uniform cache sizes.

• Evaluating the achieved performance and identify perfor-
mance bottlenecks on the three different GPU architecture
using the Instruction Roofline Model [7]. We demonstrate
that the local assembly kernel is sensitive to cache size
when operating for larger k-mer sizes, thus, we see GPUs
with relatively larger cache sizes performing better for
large k-mer sizes.

• Comparing the performance across the three platforms
using the Pennycook portability metric [7, 8] to quantify
the portability of local assembly kernel across multiple
vendor GPUs and programming models. We show that
our implementation of the local assembly kernel achieves
a good performance portability across the three GPUs.

• We also demonstrate an analysis of the local assembly
kernel using the architecture oblivious potential speedup
plot to project performance improvements for different
devices given ideal theoretical performance. This helps
inform the hardware improvements that could be benefi-
cial for a kernel like local assembly.

Our study is based on the optimized CUDA implementation
of local assembly that was implemented initially keeping in
mind an NVIDIA ecosystem, this kernel was then ported to
HIP programming model to run on AMD GPUs and ported to
SYCL to run on Intel GPU architectures.

II. BACKGROUND

A. de Bruijn Graphs

De Bruijn graphs [9–11] are directed graphs made of
overlapping sequences of characters and were first used to
assemble genomic sequences in 1995 [12]. Each node in the
graph represents a character sequence of fixed length, and a
directed edge represents an overlap where the suffix of the first
node overlaps with the prefix of the next node [13] (see Figure
1). An Eulerian path through the graph produces a genomic
contig. Typically, several increasing lengths of k are used
iteratively to construct de Bruijn graphs to resolve loops and
other complexities in the graph. Hash tables are an effective
way of implementing de Bruijn graphs in practice. The choice
of hash tables as a data structure in this case also simplifies
most algorithms that apply to these graphs.
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Fig. 1. de Bruijn Graph Overview with k=4 and k=6. a) Each input sequence
is segmented into overlapping k-mers. b) The nodes of the de Bruijn graphs are
made up of the k-1 prefix and suffix of each k-mer. The edges of the graph
are the k-mers. Walking the directed edges of the graph gives the original
sequence. Using longer k-mers resolves forks in the graph, as shown here,
where using k=6 resolves the fork in the k=4 graph. c) A hash table is created
with the k-mer prefix as a key and the extension character as the value. The
hash table is created in parallel, with each thread corresponding to a k-mer.
Thread collisions are resolved with an atomicCAS instruction.

B. MetaHipMer

Metagenomics is the study of the collective genome of
microbial communities found in various environments. This
is more complicated than the study of a single organism’s
genome (genomics) as metagenomics involves taking a sample
directly from an environment and analyzing it without any
pre-processing. A metagenomic sample may contain genomes
of thousands of organisms with varying populations, thus
making the problem of metagenome assembly a much more
challenging task. [4]. MetaHipMer is a de novo assembler,
optimized for metagenomic data, and uses UPC++ to distribute
its workload over thousands of nodes [6][14]. The localized
portions of work on each node are offloaded to GPUs in
an asynchronous manner [15] [4] hence efficiently utilizing
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Fig. 2. MetaHipMer Pipeline: MetaHipMer is a de novo metagenome
assembler. It uses de Bruijn graphs to construct assemblies of the genomes
present in a metagenomic sample, and then estimate the proportion of each
species that is present based on the number of reads that align back to each
genome. The local assembly phase takes as input reads that align to the edge
of each contig and creates a smaller de Bruijn graph which is used to extend
the edges of each contig.

CPU and GPU resources. MetaHipmer has many advantages
over the shared memory metagenome assemblers; its ability
to scale across thousands of nodes allows it to co-assemble
large datasets that otherwise would have to follow a multi-
assembly style workflow [6]. For example, water samples from
different locations in a lake over a period of one year can
be co-assembled to analyze the bacterial and viral species
present and how the quantities of each species change over
time. Co-assembly, or assembling all samples together in a
single assembly, has been shown to have several advantages,
including recovering a larger fraction of the rare species
present, but co-assembly is extremely memory-intensive. The
scaling properties of MetaHipmer allow it to use the memory
on as many nodes as it is allocated, and thus, it has been able
to co-assemble metagenomic datasets in the order of terabytes
that were previously too large to assemble.

MetaHipMer has an iterative workflow (see Figure 2) that
starts with creating k-mers from each of the input reads,
filtering out likely erroneous reads (those that occur only
once), and then contigs are generated via a global de Bruijn
graph construction. Sequencing error and homology between
organisms can cause unresolvable forks in the global de Bruijn
assembly graph, thus limiting the lengths of contiguous regions
of DNA (or contigs) that can be obtained in this step. Local
assembly performs a local de Bruijn graph traversal using only
the reads that align to each end of a contig, extending the edges
to resolve errors in the global graph and providing much longer
contigs.

C. Local Assembly Module

All the reads and the contigs to which they align are
localized on the same nodes, this allows the local assembly

Contig Binning
Estimate Hash 

Table Sizes
Create Batches GPU Initialize

Right Extension 
Kernel

Left Extension 
Kernel

All 
batches 
done?

Append Extensions 
to Contigs

Yes

No

Fig. 3. Overview of the GPU local assembly workflow

phase to be offloaded to GPUs without being interrupted by
off node communications. The local assembly phase involves
breaking down all the reads into k-mers and constructing a
de Bruijn graph using hash tables as the underlying data
structure. The next step is to traverse the de Bruijn graph
starting from the end of the contig that is to be extended.
The process of traversing the de Bruijn graph is called mer-
walk and has been described at length in [4] and [16]. This
step essentially involves reading a k-mer from the end of a
contig and performing a look up in the hash table, each hit
in the hash table results in a character being appended to the
end of the contig.

The local assembly module is called in each iteration of the
MetaHipmer workflow to extend the contigs (see Figure 1),
and constitutes a significant portion of the overall runtime.
Moving local assembly to the GPU sped up this portion of
the workflow by 7x [4]. The local assembly module is given
a list of contigs and a corresponding set of reads that align
to the ends of the contigs. Since the underlying algorithms
and data structures are not ideal for performance on a GPU,
the local assembly module exploits the latency-hiding nature
of the GPU by inundating each GPU with as much work
as can be offloaded in a single kernel call. To this end, the
local assembly’s GPU version uses a pre-processing phase that
accurately estimates the upper limit of each hash table’s size
and reserves memory accordingly (Figure 3). Another step in
this pre-processing phase is the binning of the contigs based
on the number of reads that are assigned to each contig. This
is important because the graph traversal phase of the algorithm
has a non-deterministic amount of work, and because multiple
graph walks are performed in parallel, warp stalling can be
avoided if a similar amount of work gets offloaded together
(i.e., all walks terminate after a similar number of steps). Here,
the binning method enables offloading the contigs with an
estimated similar amount of work together.

Each bin of contigs, along with their corresponding reads,
is offloaded in a separate kernel call. Within each kernel call,
each contig and its corresponding reads are assigned to one
warp containing 32 threads. Each warp then constructs the de
Bruijn graph in parallel, using a hash table as the underlying
data structure. Each hash table uses the k-mer as the key and
the value contains the extension nucleotide, as well as a voting
metric to determine the number and quality of the reads that
determined the extension nucleotide (see Algorithm 1).
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Fig. 4. Overview of the GPU local assembly kernel. One contig is assigned
per warp. Dotted arrows show threads that are masked out during the merwalk.

After the hash table construction, each end of the contig is
extended by entering the graph traversal phase, using the k-
mer from the end of the contig as the first key. The DNA walk
continues until the extension value in the hash table is either
a fork, a loop or there is no nucleotide to continue the walk
(see Algorithm 2). The graph traversal phase is performed
by a single thread of a warp, and the state of the walk (fork,
loop, or termination) is then broadcast to the other threads. An
overview of the local assembly kernel can be seen in Figure
4.

III. ALGORITHM IMPLEMENTATIONS

Local assembly code was initially implemented in CUDA
and optimized for NVIDIA GPUs using the low level intrinsics
available. Below, we provide an overview of how the CUDA
code differs from the SYCL and HIP counterparts. We also
include the effort involved in porting from the initial CUDA
code to the SYCL and HIP variants to help understand
developer productivity offered by the different programming
models when porting a complex bioinformatics GPU kernel.

A. CUDA

When implementing the de Bruijn graph construction phase
of the local assembly kernel, threads of each warp access
consecutive k-mers in each read, e.g. in Figure 1, the con-
secutive k-mers are inserted by consecutive threads of a warp
doing parallel insertions in a hash table. Parallel insertions can
result in two types of collisions, hash collisions, which are
resolved using linear probing and thread collision. A thread
collision occurs when multiple threads run into identical k-
mers but each k-mer is located at a different index. In such
a case, all the k-mers must be added to the same location
in the hash table but in an atomic manner. In the CUDA
programming model this is achieved by using the instruction
__match_any_sync to synchronize only those threads in
the warp that are colliding and then using atomicCAS() to
update the entry in an atomic manner.

In the second phase of the algorithm, the de Bruijn graphs
are traversed with only one thread in each warp performing

the walk. These DNA walks are called mer-walks. At the end
of the walk if the walk is not accepted, the hash tables are
reconstructed using a different k-mer size. Due to the iterative
nature of the algorithm, the state of the walk needs to be
communicated to all the threads of the warp, this is done using
shuffle instructions provided by CUDA that allow the threads
to communicate data through direct register to register transfer.

B. HIP

The original CUDA code was converted to HIP for AMD
GPUs using the hipify tool provided as part of ROCm toolkit.
A large portion of the code was converted with ease, however
since the kernel relied heavily on CUDA particular intrinsics,
significant manual intervention was required. Below are some
major modifications that were performed manually:

• The implicit assumption in the CUDA code is that a warp
is 32 threads wide, this is not true on AMD GPUs, hence
we had to manually change the code to correct this.

• Since HIP on AMD GPUs does not have the
__match_any_sync instruction available, the code for
ensuring atomic access in case of a thread collision had
to be modified. This was done by leveraging implicit
synchronization of threads in a warp (a wavefront on
AMD GPUs) and adding a flag to keep track of threads
that had already inserted a value in the hashtable.

• Other minor code modifications were needed to fix issues
such as changes to warp shuffle functions and lack of
explicit warp synchronizations on AMD hardware.

C. SYCL

The CUDA code was converted to SYCL code using the
SYCLOMATIC migration tool [17]. Workload distribution
changes were made because of the difference in warp and
thread sub-group sizes between the architectures. CUDA has
a fixed warp size of 32, while SYCL allows variable sizes of
sub-groups. We experimented with several sub-group sizes and
found that the sub-group size of 16 had the most consistent
and optimal performance.

Similar to the HIP implementation, the atomic insertion
function needed to be completely rewritten in SYCL. The
SYCL implementation uses a work-group barrier to ensure that
all insertions are complete before continuing (see Appendix
B). The sub-group barrier implementation was tested in both
CUDA and HIP to ensure correctness of results because of the
implementation change.

Algorithm 1 Construct hash tables
1: C ← contigs
2: for each contig c in C do
3: for each read r in get reads(c) do
4: for each k-mer k in r do
5: k-mer ht.insert(k)
6: end for
7: end for
8: end for
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TABLE I
HPC ARCHITECTURES, COMPILERS AND LANGUAGES

HPC
System Accelerator Programming

Model Compiler

Perlmutter
(NERSC) Nvidia A100 CUDA CUDA 12.0

Frontier
(OLCF) AMD MI250x HIP ROCm 5.3.0

Sunspot
(ALCF) Intel Max 1550 SYCL Intel DPC++ 2023

Algorithm 2 DNA walks
1: c← contigs
2: walk← empty
3: walk state← empty
4: k-mer← get k-mer(c)
5: for i = 0 to i < max walk len do
6: if loop exists(k-mer) then
7: end walk
8: end if
9: ext← k-mer ht.lookup(k-mer)

10: if ext == end || ext == fork then
11: walk state← ext
12: break
13: end if
14: end for

IV. EXPERIMENTAL SETUP

A. System Architecture and Compilers

We evaluate our implementation on three different GPU
architectures (shown in Table I). The CUDA implementation
was tested on an Nvidia A100, the HIP implementation was
tested on an AMD MI250x, and for the SYCL implementation,
we used Intel MAX1550. Note that the MI250X has two
graphics compute dies (GCDs) per GPU, for this study we
used only one GCD. Similarly, the Intel Max 1550 GPU has
two tiles, and for this study we used a single tile. The compiler
toolchains and their versions used for each implementation are
shown in Table I. It must be noted that the Sunspot system used
for the Max 1550 GPU was using pre-production software
which may impact performance/results.

B. Datasets

In this study, we used the same test data that was used
to assess the performance of the GPU local assembly kernel
in [4]. However, in this case, since we only want to study
performance on a single device at a time, we extracted much
smaller datasets from the data in [4] such that it allows us
to replicate the conditions of a production case yet providing
small run times for convenient profiling. The local assembly
module is called multiple times in the MetaHipmer workflow,
and each time it is called with a successively larger k-mer size.
To understand the effects of varying k-mer size, we used four

datasets, each corresponding to k-mers of length 21, 33, 55,
and 77 (k-mer sizes that are used by MetaHipmer in production
workflow). Since these were extracted from intermediate data
produced by MetaHipMer in the course of de novo assembly,
the size of each dataset varies, depending on the number
and size of reads that align to each contig. Characteristics of
each dataset can be found in Table II. It must be noted that,
since we use test data extracted from real-world datasets, the
conclusions from this study can be applied to the production
application.

V. RESULTS AND ANALYSIS

As described before, the local assembly kernel relies only
on integer operations. Therefore, we utilize the instruction
roofline [7] to understand the performance across different
GPU architectures. We then create a modified version of
the theoretical speed-up plot used in [18] to demonstrate
the normalized performance relative to the sustained machine
peak. We leverage the insights from these tools to understand
the performance limiters and variations in performance across
different GPU architectures. In addition, we demonstrate per-
formance portability using the Pennycook portability metric
[8, 19]. Finally, we draw conclusions that may apply to a
wider set of bioinformatics applications that rely on similar
algorithmic motifs.

A. Time-to-solution Performance

The raw kernel execution times for each architecture can
be seen in Figure 5. It must be noted that larger k-mer sizes
do not necessarily mean more work, since work is dependent
upon the number of reads assigned to the contig, as well as
the length of the final extension. It can be observed in the
figure that the run-times for the AMD MI250x device show a
unique pattern, i.e., for the larger k-mer sizes, there is a drastic
increase in runtime, which is different from both the other
devices, which more or less center around a similar average
runtime. Figure 5 also illustrates that for varying k-mer sizes,
the local assembly kernel utilizes device resources differently
across all devices, hence a large difference in performance on
the same datasets. To better understand the behavior of this
kernel across architectures we do an in-depth analysis in the
following sections.

B. Roofline Performance Analysis

The Instruction Roofline Model [7] enables the roofline
analysis capability for integer-heavy applications. The In-
struction Roofline Model characterizes a kernel’s performance
as billions of instructions per second, which is a function
of peak machine bandwidth, the Instruction Intensity of the
kernel, and the machine peak measured in Giga Instructions
Per Second (GIPs). On an NVIDIA GPU the “Instruction
Intensity” is defined as warp-based instructions per global
memory transaction.

In this paper, we only measure the total integer operations
(INTOPs) instead of the total integer instructions. Considering
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TABLE II
DATASET CHARACTERISTICS.

k-mer
size

total
contigs

total
reads

average
read length

total hash
insertions

average
extn length

total
extns

21 14195 74159 155 10,011,465 48.2 684100
33 4394 20421 159 2,593,467 88.2 387283
55 3319 13160 166 1,473,920 161.0 534206
77 2544 7838 175 775,962 227.0 577496
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Fig. 5. Kernel Execution Time Comparison.

only INTOPs for modeling the performance has two advan-
tages, 1) this makes the model more portable as not every
device architecture may measure instructions per transactions
and 2) this will allow us to model pure arithmetic work-
load making the model application and compiler independent.
Therefore, we simplified the instruction roofline model by
substituting the integer operations peak for the total instruc-
tion peak and converting the “Instruction Intensity” from the
original Instruction Roofline Model to “Integer operations per
byte” which we call “INTOP Intensity (II)”.

Similar to the traditional Roofline model, the ridge point on
the roofline is called the “Machine Balance” and kernels that
fall to the left of this line are memory bound, while points
that fall to the right of this line are compute bound.

The instruction roofline plots, shown in Figure 6, indicate
that the local assembly kernel is compute-bound for all of the
k-mer sizes on the A100 GPU while it is memory-bound on
the MI250x and Max 1550 GPUs. It is interesting to see three
different trends on the three GPUs as the k-mer size increases.
Recall that in a roofline plot, the more the location of a marker
is to the upper right, the better performance it achieves (i.e.
kernel is not limited by memory bandwidth).

It can be observed that on the A100 GPU, the marker
moves to the left as the k-mer size increases from 21 to 33;
it then goes to the upper right with a k-mer size of 55 and
then moves to the lower right direction with a k-mer size of
77. As the k-mer size increases, the thread predication (load
imbalance) starts becoming dominant because the possibility
of a successful graph walk becomes more limited for larger k-

mer sizes. This effect can be observed when considering that
the k-mer size 33 marker moves slightly to the left. However,
for even larger k-mer size (55) we observe that the pointer is
moving back to the right, this is because larger k-mer sizes
benefits more from bigger cache available in the A100 device.
Similar to the earlier trend, when the k-mer size is 77, the
negative thread predication effect is revealed again hence the
marker for k-mer size 77 moves to lower right. Correlating
this discussion with Figure 5, we see A100 GPU achieves its
shortest run time at k = 55.

For the MI250x GPU, it can be seen that the markers for all
k-mer sizes move to the lower left as the k-mer size increases.
This is a combined effect of thread predication and a smaller
cache size available on the MI250x GPU. The larger k-mer
size benefits greatly from a large cache size, however in this
case increasing k-mer size results in more cache misses leading
to poorer performance. This can be again be correlated with
the longer run times on MI250x GPU in Figure 5, in particular
for the larger k-mer sizes.

In contrast to MI250x GPU profile, the markers on the Max
1550 GPU roofline plot move to the upper right direction
as the k-mer size increases. In this case, there are multiple
factors at play. First, on the Max 1550 GPU, the subgroup
size of 16 is the smallest across all the GPUs, which helps
to reduce the effect of predication for larger k-mer sizes,
secondly, Max 1550 GPU also has the largest L2 cache of
the three GPUs being considered here (see Table III), this
helps minimize any cache misses associated with larger k-mer
sizes thus keeping data movement consistent with increasing
compute requirements for larger k-mers. Hence, we see that
for larger k-mers the arithmetic intensity consistently increases
with markers moving to the right.

C. Performance Correlation Comparisons

The Instruction Roofline plots show the achieved perfor-
mance using INTOPs and INTOPs/byte, which amortizes
the total amount of bytes moved. To better understand the
bounding factor of performance, we performed a head-to-head
comparison across devices. Figure 7 plots the performance in
GINTOPs/s (Figure 7a) and total bytes moved (Figure 7b) on
the NVIDIA and AMD devices. The diagonal line is included
to observe the pattern and relationship between programming
models. In Figure 7a, the empirical dots above the dotted
diagonal indicate that the NVIDIA device has a higher perfor-
mance than the AMD device for all the k-mer sizes. While if
we look at Figure 7b, it can be observed that more bytes are
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Fig. 6. Integer Operations Roofline Model Comparison. The three GPUs show three trends (empirical markers) as the k-mer size increases. The MI250x
GPU has a smaller L2 cache size (8MB per die) than the NVIDIA GPU (40MB). Therefore, the empirical markers move to the lower left direction for AMD
GPU as the k-mer size increases. On the A100 GPU, the markers move to the left first and then move to the right, but not the upper right direction. This
is due to a combination of thread predication and increasing k-mer size. The markers move to the upper right direction on the Max 1550 GPU because of a
combination the smaller warp size (16 threads) that reduces the load imbalance impact and a much larger L2 cache (204MB per die).

TABLE III
COMPARISON OF ARCHITECTURAL FEATURES.

Board Compute Units L1 Cache L2 Cache Memory

Nvidia A100 108 SMs 192 KB/SM 40 MB 40 GB
AMD MI250X 220 CUs 16 KB/CU 16 MB 128 GB
Intel MAX1550 128 Xe - cores 64 MB 408 MB 128 GB

moved on the AMD device. This further reinforces the idea
that the smaller cache on the AMD device leads to many more
global memory accesses, especially for larger k-mer sizes.

Similarly, Figure 8 shows a comparison of INTOPs/s per-
formed and bytes moved for the local assembly kernel on
the Intel device and the NVIDIA device. It is clear that
the NVIDIA device achieves much higher performance (Fig-
ure 8a). However, Figure 8b shows that the Intel device moves
a smaller number of bytes in comparison to the NVIDIA
device. This again can be attributed to the significantly larger
L2 cache, it can be observed that increasing k-mer size takes
advantage of the larger cache in the Intel device. This behavior
also explains how the Intel device is able to achieve better time
to solution in Figure 5.

D. Performance Portability

We use the Pennycook Performance Portability metric [8,
19] to understand the performance portability of local assem-
bly kernel across different GPU architectures. This formula
uses the harmonic mean to provide a metric that allows us
to quantify the degree to which a kernel or application is
portable, using any measurable property of correct application
performance on a platform.

For a given set of platforms H , the performance portability
P is:

P(a, p,H) =

{ |H|∑
i∈H

1
ei(a,p)

0,

TABLE IV
ARCHITECTURAL EFFICIENCY

THE PERFORMANCE PORTABILITY METRIC P BASED ON
THE FRACTION OF THE INTEGER OPERATIONS ROOFLINE MODEL.

dataset
k-mer size

Nvidia
A100

CUDA

AMD
MI250X

HIP

Intel
Max 1550 GPU

SYCL
Parch

21 12.8% 15.1% 15.6% 14.4%
33 14.9% 15.8% 17.3% 15.9%
55 14.5% 18.8% 16.1% 16.3%
77 15.6% 16.1% 15.3% 15.6%

Average Parch 15.5%

where ei(a, p) is the performance efficiency of application
a solving problem p on platform i.

We consider two performance portability metrics, first,
architectural efficiency, defined as the fraction of achieved
performance on the integer operations roofline model, and
second, the algorithm efficiency, defined as the fraction of
achieved performance against the ideal or theoretical INTOP
Intensity (II) that can be obtained by the algorithm on an ideal
architecture.

1) Architectural Efficiency : The architectural efficiency on
each platform is listed in Table IV along with the average
architectural efficiency. It can be observed that the local as-
sembly kernel’s average architectural efficiency across devices
as well as datasets does not vary significantly, thus indicating
good portability for the implementation across multiple GPU
architectures.

2) Algorithm Efficiency : The metric of algorithm efficiency
was introduced in [18] as a method to compare the empirical
arithmetic intensity to a theoretical ideal based on assuming
that every GPU has infinite memory capacity and a fully
associative cache. We modified this metric by measuring the
theoretical Integer Operations Intensity (II) and comparing the
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Fig. 7. Performance (left) and GBytes accessed (right) correlation between CUDA and HIP implementations on NVIDIA and AMD devices. The CUDA
implementations consistently outperforms HIP by achieving higher GINTOPs and moving less data.
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Fig. 8. Performance (left) and GBytes accessed (right) correlation between CUDA and SYCL implementations on NVIDIA and Intel devices. With a close
amount of data movement, CUDA outperforms SYCL in time-to-solution due to a higher integer throughput for small k-mer size of 21 and 33. As the k-mer
size increases to 55 and 77, SYCL has a shorter run time due to fewer data movement.

empirical II to the theoretical II. Since the local assembly
kernel is significantly more complex than a stencil kernel, we
have outlined the method by which we obtained the theoretical
II.

The theoretical II is calculated as a ratio of the theoretical
number of integer operations to the theoretical number of
bytes moved. Since it is a ratio, we count the number of
integer operations and the number of HBM bytes moved in
one iteration of the algorithm 1 and algorithm 2 and take the
ratio of instructions to bytes. This removes any dependency
of the theoretical II on dataset size.

Definitions:

INTOP1 = Integer operations for Algorithm 1
B1 = HBM bytes accessed in Algorithm 1

INTOP2 = Integer operations for Algorithm 2
B2 = HBM bytes accessed in Algorithm 2

Algorithm 1: K-mer Hash Table Construction. The
dominating factor for integer operations in Algorithm 1 is
the hash function which is called each time a k-mer insertion
occurs. We use the MurmurHashAligned2 hash function [20]

1099



TABLE V
INTEGER OPERATIONS IN THE HASH FUNCTION

Dataset (k-mer size) 21 33 55 77

Initialization 33 33 33 33
Mix Loop 125 200 325 475
Cleanup 31 31 31 31

INTOP1 215 305 457 635

in this implementation, which includes a loop whose length
is dependent upon the length of the k-mer used, hence the
number of integer operations depend heavily on the k-mer
size used.

The number of HBM bytes moved are the bytes required
to read in the k-mer and corresponding quality score and the
number of bytes needed to insert a k-mer into the hash table.
The hash table has a 4-byte pointer as a key, and the value is
the extension, which is a 1-byte char. A 4-byte quality score
is also recorded, as well as a 4-byte count for the number of
reads with this k-mer.

B1 = 2 ∗ k + (3 ∗ 4 + 1) (1)
= 2k + 13 bytes (2)

Algorithm 2: DNA Walks The DNA walk in Algorithm 2
starts with slicing the k-mer length from the end of the contig
that we wish to extend. This k-mer is used as a key in the hash
table, and the extension value is added then the next k-mer is
looked up in the table, and this continues until we reach a
loop, a fork, the end of the table or max_walk_len.

As above, the number of integer operations in the loop is
equal to the number of integer operations in the hash function
(used for lookup this time).

The number of HBM bytes moved are the bytes required to
read in the k-mer, k, a lookup in the hash table is the same
13 bytes written when the table is constructed.

B2 = k + 13 bytes (3)

The DNA Walk algorithm is run every time the Hash Table
Construction algorithm is run, so we can simply sum the
INTOP and byte values and then take the ratio to obtain the
theoretical II.

II =
INTOP1 + INTOP2

B1 +B2
(4)

(5)

Table VI shows theoretical II values computed for different
k-mer sizes and Table VII shows the algorithm efficiency
achieved across different devices. It can be observed in Table
VII, except for a few outliers, overall, the local assembly
kernel shows good portability across different architectures.
Something interesting that can be observed in this table is the
increasing algorithm efficiency for NVIDIA and Intel devices

TABLE VI
THEORETICAL II CALCULATIONS

k-mer
size

Integer Operations
per loop cycle

Bytes
per loop cycle INTOP Intensity (II)

21 430 89 4.831
33 610 125 4.880
55 914 191 4.785
77 1270 257 4.942

TABLE VII
ALGORITHM EFFICIENCY

THE PERFORMANCE PORTABILITY METRIC P BASED ON
THE FRACTION OF ACHIEVED THEORETICAL AI.

dataset
k-mer size

Nvidia
A100 GPU

CUDA

AMD
MI250X GPU

HIP

Intel
Max 1550 GPU

SYCL
Palg

21 17.1% 55.4% 13.4% 18.0%
33 17.6% 31.4% 15.8% 20.0%
55 21.1% 26.7% 30.0% 20.3%
77 27.2% 28.9% 60.9% 19.5%

Average Palg 19.38%

for increasing k-mer sizes and the inverse for the AMD device.
This again points to the ability of the algorithm to utilize larger
caches and achieve closer to theoretical peak performance.

E. Potential Speed Up Plot

Unifying the architecture efficiency and the algorithm ef-
ficiency on the same plot yields important information as
demonstrated in [18], especially because it allows us to analyze
a GPU kernel’s performance while being oblivious to the
underlying device architecture.

In Figure 9 we combine the architecture efficiency (the
fraction of sustained performance on the integer operations
roofline model, left y-axis) and algorithm efficiency (the frac-
tion of achieved performance against the theoretical INTOP In-
tensity, bottom x-axis) into a single plot for the local assembly
kernel. To quantify the overall algorithmic and implementation
performance across different devices, one can define a set of
iso-curves of constant potential speedup. In the Figure [18],
the right y-axis represents potential speed up that can be gained
by improved performance, this can be derived by introducing
a new and better suited algorithm for GPU architectures,
better compiler code generation or by further optimizing the
implementation. Similarly, the top x-axis represents potential
speed up that can be gained by improving data locality or by
better utilizing the device’s memory sub-systems.

Figure 9 shows that most empirical dots for the local assem-
bly kernel are gathered in the bottom left corner, which is very
different from the traditional stencil [18] computation usually
located in the upper right corner. On all three architectures,
we can see there is a lot of potential for speed up, in particular
by improving the kernel execution performance (y-axis). The
potential for improvement by better utilizing the memory sub-
system is significantly high for lower k-mer values however,
devices with larger cache (e.g. Intel) end up exploiting memory
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Fig. 9. Potential Speed Up Plot

bandwidth much better for larger k-mer values. It can be
observed that on the Intel device, local assembly kernel can
achieve up to 60% of the theoretical II. For NVIDIA device,
the trend is similar to Intel but it is much localized to the left
side of the plot which indicates to larger potential gains by
using novel algorithms, more optimized implementation or a
data structure with more localized memory access pattern.

Figure 9 provides an insight into the fact that bioinformatics
algorithms in their current state are not very well suited
for GPU architectures and programming models, i.e., porting
from CPU and getting performance gains require significant
low-level kernel development and optimization. The reason
for this can be attributed to the relatively small presence
of bioinformatics workloads when considering the overall
utilization of large-scale systems dedicated to science [21].
This has led the GPU designers to favor an architecture that is
more optimized for the typical physics and science workloads.
However, with GPUs quickly taking over the computing
landscape, bioinformatics workloads need to start adapting.
Similarly, GPU architectures need to start supporting features
that favor bioinformatics workloads, e.g., Intel’s introduction
of a larger L2 cache allows the local assembly kernel to scale
better and achieve higher efficiencies at large k-mer sizes
(Figure 9).

VI. CONCLUSION

With the wide-scale adoption of GPUs as the computing
element of choice, most of the existing workloads are being
ported to GPUs. The availability of portable programming
models has made it much easier and straightforward to have a
single code base that works across all the vendor GPUs. How-
ever, less common workloads like bioinformatics applications
face multiple challenges in this space. These workloads rely
on algorithms and data structures that are quite different from
the widely used physics workloads, this leads to developers

needing to build everything from scratch using low level
programming models such as CUDA, HIP and SYCL. In
this paper, we present an analysis of porting a complex
bioinformatics kernel across multiple vendor GPUs.

The Local Assembly kernel that is part of the popular
metagenome assembler (MetaHipMer) relies on hash tables
to implement de Bruijn graphs and traversal algorithms for
extending DNA contigs. This kernel was initially implemented
in CUDA for NVIDIA GPUs and then ported using SYCL
and HIP to Intel and AMD GPUs, respectively. In this paper
we provide an in-depth analysis of the underlying algorithm’s
portability across three different vendor GPUs, we study the
hardware features that limit this algorithms performance while
clearly highlighting the features that may support better scaling
of such workloads.

We demonstrate that larger GPU memory along with a
memory subsystem with large cache sizes is more suitable for
workloads like local assembly, it is promising to see that some
of the newer architectures are making such features available.
It has been further shown that graph based algorithms are not
the best at exploiting the SIMT nature of GPUs since frequent
divergence, inter-warp communication and synchronization
leads to a complex as well as a sub optimal code, hence
leading to poorer peak utilization of the devices in addition to
poor portability. In this space, independent thread scheduling
may help mitigate the issues by allowing for easier inter-warp
communication and simplifying the code [22].

In summary, bioinformatics algorithms can be complex to
offload on GPUs and may require the GPU ecosystem to
pay more attention to these workloads as they become more
and more dominant with rapid development in bioinformatics
technologies of data generation.
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L. Oliker, and K. Yelick, “Terabase-scale metagenome
coassembly with MetaHipMer,” Scientific Reports,
vol. 10, no. 1, p. 10689, Jul. 2020, number: 1
Publisher: Nature Publishing Group. [Online]. Available:
https://www.nature.com/articles/s41598-020-67416-5

[7] N. Ding and S. Williams, “An Instruction Roofline Model
for GPUs,” in 2019 IEEE/ACM Performance Model-
ing, Benchmarking and Simulation of High Performance
Computer Systems (PMBS). Denver, CO, USA: IEEE,
2019, pp. 7–18.

[8] S. J. Pennycook, J. D. Sewall, and V. W.
Lee, “A Metric for Performance Portability,” Nov.
2016, arXiv:1611.07409 [cs]. [Online]. Available:
http://arxiv.org/abs/1611.07409

[9] C. F. Saint-Marie, “Solution to question nr. 48.”
l’Intermediaire des Mathematiciens, 1894.

[10] N. G. De Bruijn, “A combinatorial problem,” Proceed-
ings of the Section of Sciences of the Koninklijke Ned-
erlandse Akademie van Wetenschappen te Amsterdam,
vol. 49, no. 7, pp. 758–764, 1946.

[11] I. J. Good, “Normal recurring decimals,” Journal of the
London Mathematical Society, vol. 1, no. 3, pp. 167–169,
1946, publisher: Oxford University Press.

[12] R. M. IDURY and M. S. WATERMAN, “A New
Algorithm for DNA Sequence Assembly,” Journal of
Computational Biology, vol. 2, no. 2, pp. 291–306, 1995,
eprint: https://doi.org/10.1089/cmb.1995.2.291. [On-

line]. Available: https://doi.org/10.1089/cmb.1995.2.291
[13] P. E. C. Compeau, P. A. Pevzner, and G. Tesler,

“Why are de Bruijn graphs useful for genome

assembly?” Nature biotechnology, vol. 29, no. 11,
pp. 987–991, Nov. 2011. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5531759/

[14] J. Bachan, S. B. Baden, S. Hofmeyr, M. Jacquelin,
A. Kamil, D. Bonachea, P. H. Hargrove, and H. Ahmed,
“UPC++: A High-Performance Communication Frame-
work for Asynchronous Computation,” in 2019 IEEE
International Parallel and Distributed Processing Sym-
posium (IPDPS). Rio de Janeiro, Brazil: IEEE, 2019,
pp. 963–973.

[15] M. G. Awan, J. Deslippe, A. Buluc, O. Selvitopi,
S. Hofmeyr, L. Oliker, and K. Yelick, “ADEPT: a do-
main independent sequence alignment strategy for GPU
architectures,” BMC bioinformatics, vol. 21, no. 1, p. 406,
Sep. 2020.

[16] E. Georganas, A. Buluç, J. Chapman, S. Hofmeyr,
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APPENDIX A
ALGORITHMIC DIFFERENCES BETWEEN CUDA, HIP AND SYCL

The atomic insertion into the hash table had to be rewritten in HIP and SYCL because HIP and SYCL did not have functions
equivalent to __match_any_sync and __syncwarp(mask)

In CUDA, __match_any_sync and __syncwarp(mask) are used to sync the threads that are in conflict with the hash
table insertion to allow for an atomic insertion.

In HIP, this functionality is not possible, so each thread is given a done flag, and the while loop runs until all threads have
inserted their values.

In SYCL, a sub-group barrier, sg.barrier() is used to to synchronize all of the threads in the subgroup inside the loop
and dpct::atomic_compare_exchange_strong was used for atomic insertion. This same implementation was tested
in CUDA with no degradation in performance.

The different versions of __ht_get_atomic can be seen in the following code block.

1 // CUDA Implementation of ht_get_atomic()
2 __device__
3 loc_ht& ht_get_atomic(loc_ht* thread_ht, cstr_type kmer_key, uint32_t max_size){
4 unsigned hash_val = MurmurHashAligned2(kmer_key, max_size);
5 unsigned orig_hash = hash_val;
6

7 while(true){
8 int prev = atomicCAS(&thread_ht[hash_val].key.length, EMPTY, kmer_key.length);
9 int mask = __match_any_sync(__activemask(), (unsigned long long)&thread_ht[hash_val]);

10

11 if(prev == EMPTY){
12 thread_ht[hash_val].key.start_ptr = kmer_key.start_ptr;
13 thread_ht[hash_val].val = {.hi_q_exts = {0}, .low_q_exts = {0}, .ext = 0, .count = 0};
14 }
15 __syncwarp(mask);
16 if(prev != EMPTY && thread_ht[hash_val].key == kmer_key){return thread_ht[hash_val];}
17 else if (prev == EMPTY){return thread_ht[hash_val];}
18 hash_val = (hash_val +1 ) %max_size;
19 if(hash_val == orig_hash){printf("*hashtable full*\n");}
20 }
21 }
22

23 // HIP Implementation of ht_get_atomic()
24 __device__
25 loc_ht& ht_get_atomic(loc_ht* thread_ht, cstr_type kmer_key, uint32_t max_size){
26 unsigned hash_val = MurmurHashAligned2(kmer_key, max_size);
27 unsigned orig_hash = hash_val;
28 int done = 0;
29 int prev;
30

31 while(true){
32 if(__all(done))
33 return thread_ht[hash_val];
34

35 if(!done) {
36 prev = atomicCAS(&thread_ht[hash_val].key.length, EMPTY, kmer_key.length);
37 if(prev == EMPTY){
38 thread_ht[hash_val].key.start_ptr = kmer_key.start_ptr;
39 thread_ht[hash_val].val = {.hi_q_exts = {0}, .low_q_exts = {0}, .ext = 0, .count = 0};
40 }
41 }
42

43 if(!done) {
44 if(prev != EMPTY && thread_ht[hash_val].key == kmer_key){done = 1;}
45 else if (prev == EMPTY){done = 1;}
46 }
47

48 if(__all(done))
49 return thread_ht[hash_val];
50 if(!done) {
51 hash_val = (hash_val + 1) % max_size;
52 if(hash_val == orig_hash){ printf("*hashtable full*\n"); done = 1; }
53 }
54 }
55 }
56
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57 //SYCL Implementation of ht_get_atomic()
58 loc_ht& ht_get_atomic(loc_ht* thread_ht, cstr_type kmer_key, uint32_t max_size,
59 const sycl::nd_item<3> &item_ct1,
60 const sycl::stream &stream_ct1){
61 sycl::sub_group sg = item_ct1.get_sub_group();
62 unsigned hash_val = MurmurHashAligned2(kmer_key, max_size);
63 unsigned orig_hash = hash_val;
64

65 while(true){
66 int prev = dpct::atomic_compare_exchange_strong<sycl::access::address_space::generic_space>(
67 &thread_ht[hash_val].key.length, EMPTY, kmer_key.length);
68

69 if(prev == EMPTY){
70 thread_ht[hash_val].key.start_ptr = kmer_key.start_ptr;
71 thread_ht[hash_val].val = {.hi_q_exts = {0}, .low_q_exts = {0}, .ext = 0, .count = 0};
72 }
73 sg.barrier();
74

75 if(prev != EMPTY && thread_ht[hash_val].key == kmer_key){return thread_ht[hash_val];}
76 else if (prev == EMPTY) { return thread_ht[hash_val];}
77

78 hash_val = (hash_val + 1) % max_size;
79 if(hash_val == orig_hash){ stream_ct1 << "*hashtable full*\n"; }
80 }
81 }
82 // This implementation was designed for and has been tested for correctness on Intel GPUs generation 9 and

Xe-HPC architectures.
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APPENDIX B
ARTIFACT DESCRIPTION APPENDIX: PERFORMANCE

MODELING AND ANALYSIS OF A de Bruijn GRAPH BASED
LOCAL ASSEMBLY KERNEL ON MULTIPLE VENDOR GPUS

A. Abstract

This artifact contains the CUDA, HIP, and SYCL code
for the local assembly kernel of MetaHipMer, as well as
instructions to install and run them on Nvidia, AMD, and Intel
hardware. It also includes the commands and scripts used for
profiling. The data collected from profiling was used to create
Tables 3, 6 and Figures 5-9.

B. Description

1) Check-list (artifact meta information): Fill in whatever
is applicable with some informal keywords and remove the rest

• Algorithm: Local Assembly using de Bruijn Graphs
• Program: CUDA, HIP, & SYCL
• Compilation: CUDA 12.0, ROCm 5.3.0, Intel DPC++ 2023
• Data set: Test datasets are included in the Github repository
• Run-time environment: Profiling results were completed on

Perlmutter (Nvidia A100), Frontier (AMD MI250x), Sunspot
(Intel Max 1550). The SYCL implementation was developed
and tested on Intel DevCloud.

• Hardware: Nvidia A100, AMD MI250x, Intel Max 1550
• Output: Correct output for the sample input is provided in

the github repository.
• Experiment workflow: Git clone. Switch to correct branch

(ie CUDA, HIP, SYCL). Run test program.
• Publicly available?: Yes

2) How software can be obtained (if available): Software
can be obtained at the github repository
https://github.com/leannmlindsey/gpu_local_ht.git

3) Hardware dependencies: The software was tested
on the following platforms: Nvidia Ampere GPU (A100),
AMD Instinct GPU (MI250x), Intel Data Center Max 1500
(MAX1550)

4) Software dependencies: CUDA 12.0, Nsight-compute,
ROCm 5.3.0, ROCProf, Intel DPC++ 2023, Intel Advisor

5) Datasets: All datasets used for testing and profiling are
included in the github repository folder /locassm_data

C. Installation

The github repository contains the original optimized
CUDA local assembly code, as well as the ported HIP
and SYCL versions of the code. The repository has three
branches, the main branch contains the CUDA code, the
hip branch contains the HIP code, the sycl branch contains
the SYCL code. Installation instructions for each branch are
included in the README.md file in the corresponding branch.
Installation instructions include a test script that verifies the
results for correctness against a result file.

1) Nvidia/CUDA:
git clone
https://github.com/leannmlindsey/gpu_local_ht.git
cd gpu_local_ht
git status # verify you are on the main branch
nvidia-smi # verify you have access to an Nvidia GPU
cd src
mkdir build
./test_script.sh

2) AMD/HIP:
git clone https://github.com/leannmlindsey/gpu_local_ht.git
cd gpu_local_ht
git checkout hip
git status # To verify you are on the hip branch
rocm-smi # To verify that you have access to an AMD GPU
cd src
mkdir build
./test_script.sh

3) INTEL/SYCL:
git clone https://github.com/leannmlindsey/gpu_local_ht.git
cd gpu_local_ht
git checkout sycl
git status # To verify you are on the sycl branch
icpx -fsycl -I . *.cpp -o ht_loc
./test_script.sh

D. Experiment workflow
After the software is installed and tested on all three platforms, profiling can be

completed following the instructions listed below. The profiling data can then be used
to create Tables 3, 6 and Figures 5-9.

When profiling, the <exe> and <params> for each dataset can be found in the file
test_script.sh. One example is listed below:

<exe> <input file> <k-mer length> <output file>
./ht_loc localassm_extend_7-21.dat 21 res_localassm_extend_7-21.dat

1) Nvidia/CUDA:
ncu -o nvidia_profiling.out --kernel-id iterative_walks_kernel
--metrics "smsp__inst_executed.sum, dram__bytes.sum,
sm__cycles_elapsed.avg, sm__cycles_elapsed.avg.per_second"
<exe> <params>

INTOPs = smsp__inst_executed.sum
HBM Bytes = dram__bytes.sum
Time=(sm__cycles_elapsed.avg/sm__cycles_elapsed.avg.per_second)

2) AMD/HIP:
rocprof -i rocprof.txt -o amd_profiling.out <exe> <params>

contents of rocprof.txt:
# IOPS
pmc: SQ_INSTS_VALU_INT32 SQ_INSTS_VALU_INT64
# HBM Bandwidth
pmc: TCC_EA_RDREQ_sum TCC_EA_RDREQ_32B_sum
TCC_EA_WRREQ_sum TCC_EA_WRREQ_64B_sum

INTOPs = 64(SQ_INSTS_VALU_INT32 + SQ_INSTS_VALU_INT64)
HBM Bytes = 32* TCC_EA_RDREQ_32B_sum +
64 * (TCC_EA_RDREQ_sum-TCC_EA_RDREQ_32B_sum) +
32 * (TCC_EA_WRREQ_sum{TCC_EA_WRREQ_64B_sum) +
64 * TCC_EA_WRREQ_64B_sum

The kernel time can be taken from the rocprof output file.
3) Intel/SYCL:

advisor --collect=roofline --profile-gpu
--project-dir=./gpu_local_ht
-- <exe> <params>

The kernel time, INTOPs and HBM Bytes can be taken from the Intel Advisor HTML
output file.

E. Evaluation and expected result
The profiling data can be used to calculate the metrics that were visualized in Tables

3, 6, and Figures 5-9. We used warp level INTOPs in our calculations.
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