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We present a new algorithm for the simulation of polymer-laden flows in microscale environments. Our algorithm is based
on a hybridisation of high-order accurate continuum and particle methods. The continuum algorithm provides the basic
framework for high-performance computations to resolve device length and time scales. It is coupled to a new particle
method with an optimised treatment of particle interactions such that the time step is on the level of the fluid continuum. We
demonstrate our simulation capability on the flow of polymers in a contraction microchannel used for single-molecule
detection.
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1. Introduction

Understanding complex biological flows through

advanced algorithmic modelling is critical to several

important biomedical applications such as targeted drug

delivery coupled with continuous monitoring and diag-

nostics. These applications will leverage miniaturised

technology based on the advancements in microfluidics

and nanofluidics. In order for this development to continue

towards the design of optimised trustworthy working

devices, advanced modelling and simulation tools are

needed to understand the fundamental physics and

chemistry of biological fluids at much smaller than normal

scales. This will enable shorter design and fabrication

cycles and ultimately get devices to market more quickly

and with less cost.

Modelling complex biological fluids is a challenge,

because their non-Newtonian constitutive behaviour is not

easily represented. The problem is further complicated

when the flow of biological fluids is restricted to the small

length scales of state-of-the-art biomedical devices. At

these scales, new fluid mechanical and modelling issues

arise, because (1) surface-to-volume ratios are extremely

large and (2) characteristic lengths of the macromolecules

or cells approach those of the flow geometry. For example,

a highly concentrated solution of suspended polymer

molecules may be represented at large, system-level scales

with a continuum viscoelastic constitutive model [1].

However, when the geometry length scales are comparable

to the inter-polymer spacing, a continuum approximation

is no longer appropriate and a discrete molecular

approximation is needed. In addition, when the length

scale of the geometry is comparable to the length of an

individual polymer macromolecule, new physical beha-

viour may be observed near surfaces where velocity and

concentration gradients tend to be large and macromol-

ecular shear degradation or scission can occur as a result.

This dynamic can be beneficial in a DNA-amplification

device, e.g., but detrimental in a drug-delivery system.

The discrete representation of particles suspended in a

fluid is needed in this case to predict the fate of individual

molecules.

In a previous work, we had first developed a hybrid

fluid-particle algorithm to model freely jointed polymers

coupled with a viscous solvent [2]. The algorithm captured

qualitatively the behaviour of a polymer molecule in a

microarray channel, namely stably enforcing the rod length

constraint and bead-surface collisions. We improved this

algorithm in regard to overall stability such that the particle

time step was on the order of the fluid time step by

implementing a velocity constraint (in addition to the

position constraint) on the particles [3]. This algorithm

was extended to include additional features like a rod

non-crossing constraint [4]. A new particle method was

developed by introducing an exponential integrator and

proved to be stable for long time (i.e. fluid dynamics time

scales as opposed to molecular dynamics timescales) in

Refs [5,6].

In this paper, we have coupled the new particle

method [6] with a high-performance and higher-order

accurate fluid dynamics solver for complex geometry [7].

We consider a canonical flow that occurs in microfluidic

detection devices: flow of individual DNA polymer

strands through an abrupt contraction microchannel.

In our flow demonstrations, we introduce two polymers
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in a pressure-driven flow through a sudden contraction

microchannel. Abrupt contractions in microchannels are

common for the purpose of flow control in a microfluidic

device [8]. Here, the abrupt contraction is intended to

mimic a single-molecule detection component in a larger

system [9], where the molecules are threaded through a

region for detection using fluid mechanical forces alone.

The goal of these simulations is to predict optimal

parameters for a flow-through device.

2. Model

We model a polymer as a collection of coupled point

masses, each subject to the Langevin equation of motion

[10] (as in [2–6,11]),

›xi

›t
¼ vi; ð1Þ

›vi

›t
¼ g uðxi; tÞ2 vi

� �
þ f i þ sji; ð2Þ

subject to the constraint

kxi 2 xiþ1k2 ¼ a: ð3Þ

Here, xiðtÞ is the position of the ith particle with mass mi, u

is the fluid velocity, f i is the interparticle force acting on

particle i, g . 0 is the friction coefficient and j ðtÞ is a

white noise representing stochastic thermal bombardment

by the solvent. This assumes that the fluid velocity is

decomposed into a smooth part u and a rapidly varying

component j. The smooth part is influenced by stochastic

motion of the particles, however, and is therefore formally

a stochastic process. The constant s is given by

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2gkBT

mi

r
; ð4Þ

where kB is the Boltzmann constant and T is the

temperature.

We use the Navier–Stokes equations to model the

solvent as a continuum on domain V:

›u

›t
þ ðu ·7Þuþ

1

r
7p ¼ nDuþ

1

r
f; ð5Þ

7 ·u ¼ 0: ð6Þ

These equations describe an incompressible fluid of

density r, pressure p, velocity u and Newtonian viscosity

n, subject to an additional body force f, which will

account for fluid-particle coupling. On the domain

boundary dV, we have the no-slip boundary condition

u ¼ 0.

We consider the Navier–Stokes equations to be

applicable to length scales that are large enough that

thermal perturbations are averaged out, so u is smooth.

Thus, in our analysis, the stochastic dependence of u
in the Langevin equations is through the particle

position x only: u ¼ uðt; xðtÞÞ. In the Navier–Stokes

equations, f is

fðx; tÞ ¼
X
i

mig viðtÞ2 uðxiðtÞ; tÞ
� �

d xðtÞ2 xiðtÞð Þ; ð7Þ

where the sum is over all particles. This force is stochastic

through the position and velocities of the particles.

3. Numerical method

3.1 Particle solver

The numerical method for the integration of Equation (2)

for particles was given in detail by Kallemov and Miller

[6]. Here, we summarise the algorithm.

The rearrangement

z ¼ vegt; ð8aÞ

›zi

›t
¼ egt guðxi; tÞ þ f i þ sji

� �
ð8bÞ

permits the velocity solution

ziðtÞ ¼ zið0Þ þ

ðt
0

guðxiðsÞ; sÞ þ f i þ sjiðsÞ
� �

egsds: ð9Þ

An implicit function for the constraints is obtained

by the method of Lagrange multipliers. The Lagrange

multipliers l are obtained as solutions of linear system [6]

Aldt ¼ b ð10Þ

derived from the constraint condition (3). The matrix A

depends only on x permitting the implicit function

formulation

dzi ¼ gegtudt þ segtdWi þ ðDi21xÞA
21
i21; j 2 ðDixÞA

21
i; j

h i

£ egt e22gtðDjzÞ · ðDjzÞdt
�

þg ðDjxÞ · ðDjuÞdt

2g ðDjxÞ · ðDjuÞdt þ s ðDjxÞ · ðDjdWÞ
�
;

ð11Þ

or, in integral form,

ziðhÞ ¼ zið0Þ þ g

ðh
0

egsudsþ s

ðh
0

egsdWi

þ

ðh
0

ðDi21xÞA
21
i21;j 2 ðDixÞA

21
i; j

h i

£ egs e22gsðDjzÞ · ðDjzÞds
�

þg ðDjxÞ · ðDjuÞds

2g ðDjxÞ · ðDjuÞdsþ s ðDjxÞ · ðDjdWÞ
�
:

ð12Þ
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With time step h, these equations are discretised after

the expansion of Wagner and Platen [12],

xi a ðhÞ ¼xi að0Þ þ vi a ð0Þ
1 2 e2gh

g
þ

ðh†

0

ðL0f xi a Þðs0Þds0

þ
1

g
I0

0ð j
bÞ2 e2ghIþ0 ð j

bÞ
� �

gz
i aj b

ð0Þ;

ð13Þ

vi a ðhÞ ¼ e2ghvi a ð0Þþ e2gh

ðh†

0

f zi a ðs0Þds0

þ e2ghIþ0 ð j
bÞgz

i aj b
ð0Þþ e2gh

ðh†

0

ðL0f zi a Þðs0Þds0

þ
e2gh

g
Iþ0 ð j

bÞ2 I0
0ð j

bÞ
� �

ðL0gz
i aj b

Þð0Þ

þ e2gh ðDi21xað0ÞÞA
21
i21;k 2 ðDixað0ÞÞA

21
i;k

h in

£ 2ðDkvvð0ÞÞ · ðDkg
z
k vj b

ð0ÞÞIþ2
00 ð0; jbÞ

h

2g ðDkxvð0ÞÞ · ðDkg
z
k vj b

ð0ÞÞIþ0
00 ð0; j

bÞ
io

þ
e2gh

g
I0þ

00 ð j
b;kvÞ2 Iþ0

00 ð j
b;kvÞ

� �
ðGk vL0gz

i aj b
Þð0Þ

þ
e2gh

g
Iþ0

00 ð j
b;kvÞ2 e2ghIþþ

00 ð jb;kvÞ
� �

£ ðGk vGj b f
z
i a Þð0Þ;

ð14Þ

with

L ¼
›

›t
þ

Xm
i¼1

f i ·
›

›yi

þ
1

2

Xm
i; j; k¼1

XD
a;b;v¼1

gi ak vgj bk v

›2

›yi a›yj b
; ð15aÞ

Gj a ¼
Xm
i¼1

XD
b¼1

gi bj a
›

›yi b
: ð15bÞ

f xi a ¼ e2gtzi a ; ð15cÞ

gxi aj b ¼ 0; ð15dÞ

f zi a¼gegtui aþ
XN21

j¼1

ðDi21xaÞA
21
i21;j2ðDixaÞA

21
ij

h i

£ e2gtðDjzÞ·ðDjzÞþgegtðDjxÞ·ðDjuÞ2gðDjxÞ·ðDjzÞ
� �

;

ð15eÞ

gz
i aj b

¼segt dijdabþðDi21xaÞ A21
i21;j21ðDj21xbÞ

hh

2A21
i21;jðDjxbÞ

i
2ðDixaÞ A21

i;j21ðDj21xbÞ2A21
i;j ðDjxbÞ

h ii
:

ð15fÞ

Arabic subscripts denote the index of a bead in a polymer

chain, from 1 to M; and Greek superscripts on the bead

indices denote directional components, from 1 to D, the

spatial dimension. Itô integrals are given by

I0
0ði

aÞ ¼ Wi aðtÞ; ð16aÞ

Iþ0 ði
aÞ ¼

ðt
0

egs0 dWi a ðs0Þ; ð16bÞ

Iþ1 ði
aÞ ¼

ðt
0

s0egs0 dWi a ðs0Þ; ð16cÞ

Iþ0
00 ði

a; jbÞ ¼

ðt
0

ðs0

0

egs1 dWj b ðs1ÞdWi a ðs0Þ; ð16dÞ

I0þ
00 ði

a; jbÞ ¼

ðt
0

egs0

ðs0

0

dWj b ðs1ÞdWi a ðs0Þ; ð16eÞ

and the three integrals
Ð †

are to be interpreted in the sense

that the integrands are to be expanded as a collection of

terms multiplying exponentials expðngs0Þ, for some

integer n. The coefficients of these exponentials are

evaluated at s0 ¼ 0, so the integration really applies only

to these exponential factors.

Each step of the stochastic ordinary differential

equation (ODE) integration involves evaluating (13) and

(14), then projecting the resulting parameters {x; v} to

obey the constraints kDixk ¼ a and ðDixÞ · ðDiÞv ¼ 0.

By itself, assuming a prescribed fluid motion u, this

stochastic Langevin algorithm is second-order accurate in

the weak and strong senses [6].

3.2 Fluid solver

3.2.1 Corrector

If we consider a two-dimensional (2D) cell-centred

velocity, ui; j ¼ ðu; vÞi; j, it would be ideal (for second-

order temporal accuracy) to advance the solution to times

ðnþ 1ÞDt as follows:

unþ1 ¼ un þ Dt 2½ðu ·7Þu�nþð1=2Þ 2
1

r
7pnþð1=2Þ

�

þnDunþð1=2Þ þ
1

r
f nþð1=2Þ

�
: ð17Þ

The implicit nature of the velocity and time centring of

the pressure gradient are issues in this discretisation.

We treat the viscous source term implicitly and estimate

an intermediate velocity that is not necessarily divergence

free based on a lagged pressure gradient. This temporal

integration is performed using a second-order Runge–

Kutta method [13] that is known to be stable in L0 for our

finite volume approach to geometry. For parabolic partial
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differential equations (PDEs)

›w

›t
¼ Lwþ rðwÞ; ð18Þ

it takes the form

ðI2 m1LÞðI2 m2LÞwnþ1 ¼ ðIþ m3LÞwn

þ ðIþ m4LÞrðwnþð1=2ÞÞ

ð19Þ

with m1 ¼ m2 ¼ ð1 2 1=
ffiffiffi
2

p
ÞDt, m3 ¼ ð

ffiffiffi
2

p
2 1ÞDt and

m4 ¼ ð
ffiffiffi
2

p
2 3=2ÞDt. This leads to the following dis-

cretisation for the momentum equation:

I2 m1nD
� �

I2 m2nD
� �

u* ¼ Iþ m3nD
� �

un þ Iþ m4nD
� �

£ 2½ðu ·7Þu�nþð1=2Þ 2
1

r
7pn2ð1=2Þ þ

1

r
f nþð1=2Þ

� �
;

ð20Þ

where L ¼ nD. A projection method [14] is then used to

advance the velocity and pressure gradient in pressure

formulation form (as opposed to pressure correction)

while enforcing incompressibility

unþ1 ¼ P u* þ
Dt

r
7pn2ð1=2Þ

� �
; ð21Þ

7pnþð1=2Þ ¼
r

Dt
Q u* þ

Dt

r
7pn2ð1=2Þ

� �
; ð22Þ

where

Q ¼ GL21D; ð23aÞ

P ¼ I2Q: ð23bÞ

D, G and L are the discrete divergence operator, discrete

gradient operator and discrete Laplacian, respectively. In

our approach, P is an approximate projection operator and

L – DG [15].

3.2.2 Velocity predictor

The heat equation (20) contains as a source term the

nonlinear convective derivative u ·7unþð1=2Þ. To approxi-

mate this term, we follow finite volume discretisations of

hyperbolic systems based on high-order Godunov methods

for advection [16]. We expand the cell-centred velocity to

a cell edge and to the half step in time in a Taylor series,

for example, in the x-direction,

u
nþð1=2Þ

iþð1=2Þ; j ¼ uþ
Dx

2

›u

›x
þ

Dt

2

›u

›t

� �n

i; j

: ð24Þ

Using the PDE to substitute the time derivative, we

extrapolate from cell centres to cell edges in the plus and

minus directions, omitting the pressure gradient:

ux^i; j ¼ uni; j ^
1

2
min 1 7 uij

Dt

2Dx
; 1

� �
dxu

n
i; j

þ
Dt

2
nDuni; j þ

1

r
fni; j

� �
: ð25Þ

The normal slopes are calculated as follows, e.g.

ðdxuÞ
n
i; j ¼

ðdxuÞ
vL if ðuniþ1; j 2 uni; jÞðu

n
i; j 2 uni21; jÞ . 0;

0 if ðuniþ1; j 2 uni; jÞðu
n
i; j 2 uni21; jÞ # 0;

8<
:

ð26Þ

where [17]

ðdxuÞ
vL ¼ sign

uniþ1; j2 uni21; j

2

� �

£min 2 uni; j2 uni21; j

��� ���; 2 uniþ1; j2 uni; j

��� ���; 1

2
uniþ1; j2 uni21; j

��� ���
� �

;

ð27Þ

with one-sided differences at boundaries. We can now

solve a Riemann problem at each cell edge, where there

exist two states, having extrapolated from cell centres on

both sides of a cell edge, to obtain the state at the edge. For

the incompressible Navier–Stokes equations, the Riemann

problem solution is simple upwinding:

û
nþð1=2Þ

iþð1=2Þ; j ¼

ux;þi; j if uniþð1=2Þ; j . 0;

ux;2iþ1; j if uniþð1=2Þ; j , 0;

1
2

ux;þi; j þ ux;2iþ1; j

	 

if uniþð1=2Þ; j ¼ 0;

8>>>><
>>>>:

ð28Þ

where

uniþð1=2Þ; j ¼
1

2
uni; j þ uniþ1; j

	 

: ð29Þ

The solution to the Riemann problem is used as the flux for

the transverse correction of the plus and minus states:

ux^i; j :¼ ux^i; j 2
Dt

2Dy
û
nþð1=2Þ

i; jþð1=2Þ
2 û

nþð1=2Þ

i; j2ð1=2Þ

	 

: ð30Þ

The Riemann problem (28) is then solved again based on

plus and minus states that include the transverse flux

difference.

An intermediate projection is applied to make up for

the omitted pressure gradient in the extrapolation (25) in

order to be consistent with the constraint 7 · u ¼ 0:

u
nþð1=2Þ

iþð1=2Þ; j ¼ û
nþð1=2Þ

iþð1=2Þ; j 2 QMACðûÞx
� �nþð1=2Þ

iþð1=2Þ; j
: ð31Þ
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Here, MAC denotes the marker-and-cell centring. The

subscript x indicates the direction of the gradient to

correspond to the x-component of velocity, for example.

The final step in the predictor is a repeat of the

Godunov extrapolation with two exceptions: the velocity

used to solve the Riemann problems is the projected

normal velocity at a cell edge, e.g. u
nþð1=2Þ

iþð1=2Þ; j, not u
n
iþð1=2Þ; j;

and the intermediate projection is not performed, but,

rather, the previous solution to the Poisson’s equation is

used, since the normal velocities comprising the right-

hand side have not changed. Thus, this step only affects

the transverse velocities at cell edges, which are

corrected with transverse gradients obtained from nearest

neighbour normal gradients from the previous projection

according to

v
nþð1=2Þ

iþð1=2Þ; j ¼ v̂
nþð1=2Þ

iþð1=2Þ; j 2 QMACðûÞy
� �nþð1=2Þ

iþð1=2Þ; j
; ð32Þ

resulting in a second-order estimate of u
nþð1=2Þ

iþð1=2Þ; j, which

can be used to construct the convective derivative.

3.3 Coupling strategy

To couple the second-order strong polymer solver with a

solver for the Navier–Stokes equations, while retaining

second-order accuracy in the strong sense, we use a

predictor–corrector strategy. The algorithm is split as

follows.

3.3.1 Step 1: Fluid predictor

To advance the fluid solution with second-order accuracy,

the force must be centred at t nþð1=2Þ and accurate to second

order. With particle positions initially known only at t n,

this accuracy cannot be achieved. Instead, we use f n (7) –

the lower-order t n centring. With this source, discrete

divergence-free edge-centred – and time-centred –

estimates of the fluid velocity, u
nþð1=2Þ

iþð1=2Þ; j, are computed

with the predictor component of the Navier–Stokes

method (see Section 3.2.2).

3.3.2 Step 2: Polymer evaluation at time t þ (Dt / 2)

We average u
nþ1=2

iþ1=2; j to cell centres, e.g. in 2D,

u
nþð1=2Þ
ij ¼

1

4
u
nþð1=2Þ

i2ð1=2Þ; j þ u
nþð1=2Þ

iþð1=2Þ; j þ u
nþð1=2Þ

i; j2ð1=2Þ
þ u

nþð1=2Þ

i; jþð1=2Þ

	 

;

ð33Þ

then use a second-order particle-in-cell method to

approximate unþð1=2Þðxni Þ, the fluid velocity at the t nþð1=2Þ

predicted location of each particle. Using this, the material

time derivative _unðxni Þ is estimated by

_unðxni Þ ¼ 2 ·
unþð1=2Þðxni Þ2 unðxni Þ

Dt
þ ðvni ·7Þuðxni Þ: ð34Þ

Using the estimate of the fluid velocities and its derivatives

at time t, with the initial condition {xni ; v
n
i }, we can solve

the stochastic ODEs for the constrained particle motion

over the interval ½t n; t nþð1=2Þ�. This provides

{x
nþð1=2Þ
i ; v

nþð1=2Þ
i }, which permits the second-order

evaluation of f nþð1=2Þ from (7).

3.3.3 Step 3: Fluid corrector

Using the second-order estimate to the flux f nþð1=2Þ known

to second order, the corrector steps of the fluid solver are

carried out. This consists of the heat solver (20) and final

projection (21). The fluid velocity unþ1 is now updated to

the new time and is second-order accurate.

3.3.4 Step 4: Polymer evaluation at time t þ Dt

In this final step, we advance the polymer equations from

t nþð1=2Þ to t nþ1, now using velocity unþ1ðx
nþð1=2Þ
i Þ to

compute derivative _unþð1=2Þðx
nþð1=2Þ
i Þ in a manner analo-

gous to Step 2. The updated particle parameters

{xnþ1; vnþ1} may then be used to evaluate f nþ1 to second

order.

4. Results

We apply this hybrid fluid-particle algorithm to the

simulation of polymers that are represented by a chain of

beads and rods coupled to an incompressible viscous

solvent. We perform 2D simulations of two polymers, 150

and 80 nodes, respectively, flowing in an abrupt

contraction microchannel at three different Reynolds

numbers. This geometry is chosen so as to simulate the

transport of a polymer like a DNAmolecule into a smaller,

confined channel where a sensor might be located. The

channel section is 10mm long and the inlet is 3.75mm

wide. The contraction ratio is 4:1. We choose the

interparticle spacing, or constraint length, to be the Kuhn

length for DNA, a ¼ 100 nm, which is a measure of the

flexibility in the polymer chain; other parameters are the

particle mass, m ¼ 1e-19 g, relaxation time, g ¼ 1e þ 12 s

and s ¼ 5e þ 08 cm/s3/2 (see [2,11] for definitions).

In Figure 1, the Reynolds number at the inlet of the

channel is 0.000375. The polymers are in an initially

coiled state. The convective forces are not strong enough

to stretch them out as they proceed through the abrupt

contraction where the flow accelerates, which is a typical

behaviour in experimental DNA flows [8]. The low

resolution of these simulations is such that the viscous

forces, which dominate inertial forces at this very low
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Figure 1. Polymer locations at times 0.00199, 0.01999,
0.03499, 0.03699 and 0.03989 s for Re ¼ 0:000375.
Background colour is velocity: blue (high) and red (low).

Figure 2. Polymer locations at times 3.3e-06, 0.00017, 0.00034,
0.00038 and 0.00042 s for Re ¼ 0:0375. Background colour is
velocity: blue (high) and red (low).
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Reynolds number, are not resolved, and, therefore, do not

manipulate the polymer, either. This flow scenario is likely

not ideal for single-molecule detection to occur in the

smaller contracted channel.

In Figure 2, the Reynolds number is 0.0375. The

stronger inertial flow along with velocity gradients due to

viscous forces uncoils the polymers and stretches them out

in the accelerated region as if threading the polymers

through the contracted channel. These dynamics seem to

be ideal for the design of a sensor.

In Figure 3, the Reynolds number is 3.75. The polymer

transport is faster and the polymers are stretched out.

These could be acceptable parameters for sensor design

in this channel, but the flow might be too fast for capture

and detection of the molecule to occur. This finding

is consistent with detection systems that rely on DNA

capture techniques before amplification to ensure a signal

[9]. In such systems, the typical operating Reynolds

number is on the order of 1, so that individual DNA

molecules are not transported too rapidly to avoid capture.

A careful numerical convergence study of this coupled

system is underway to verify the accuracy claims that

are made in this paper on the basis of theoretical analysis.
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