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We present a new numerical method for particle interactions in polymer-fluid models of DNA-

laden flows. The DNA is represented by a bead-rod polymer model and is fully-coupled to the

fluid. The main objective in this work is to properly model polymer-polymer and polymer-

surface interactions by enforcing the physical rod-rod and rod-surface non-crossing con-

straints. Our new method is based on a rigid constraint algorithm whereby rods elastically

bounce off one another to prevent crossing, similar to our previous algorithm used to model

polymer-surface interactions.

KEY WORDS: microfluidics, fluid-polymer coupling, viscoelasticity, Navier-Stokes,

multiscale computational modeling

INTRODUCTION

Microfluidic devices are increasingly important in biodefense and biomedical
applications including pathogen detection, continuous monitoring, and drug delivery.
Numerical algorithms that can model flows of complex biological fluids within these
devices are needed for further development and optimization. Biological fluids, in vivo
and in vitro can be well-approximated as an aqueous solvent with numerous high
molecular weight polymeric solutes. In biological flows, as in microfluidic devices, the
suspended polymers interact with one another and interact with the confining sur-
faces. A numerical polymer-fluid model must respect the same physical constraints as
the actual system in order for the computed flows to have predictive value. The
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problem is complicated due to the time scale of the associated short-range interactions
being much smaller than the time scales of the bulk fluid, necessitating multiscale
schemes.

In previous work we developed a model that coupled bead-rod polymers to an
incompressible viscous solvent [1]. We took care to conservatively couple the polymer
and solvent forces — both viscous and stochastic — in order that the fluid ‘‘feel’’ the
effect of the polymer. It is in this sense of obeying Newton’s third law of motion that
we consider the dynamics to be ‘‘tightly coupled’’. (The purpose of the full-coupling is
to be able to simulate the effects of a large number of polymers and to compare this
hybrid approach with a viscoelastic continuum model as in Trebotich et al. [2].)
Additionally, the polymer nodes may experience elastic collisions with domain bound-
aries, thereby enforcing the physical constraint that the polymers remain confined to
the fluid. With this numerical algorithm, we have been able to simulate polymer-
boundary interactions which occur in DNA size-separation and extraction devices.
We have also obtained preliminary results for more complicated 2D and 3D device
geometries [3]. Our model captures many essential features observed in DNA visua-
lization experiments [4]. In particular, the molecule tends to extend in regions of large
shear flow, and contract in its absence.

However, to model the probable fate of individual molecules in microfluidic
systems or biological flows, it is desirable to incorporate more physically-realistic
behavior. For polymer models of DNA, of immediate concern is the non-crossing
constraint: a polymer section cannot pass through another polymer section. In our
previous freely-jointed bead-rod model, as with many other current implementations
(e.g., Somasi et al. [5]), crossing of rod sections is allowed.We treated polymer-surface
interactions as purely elastic collisions, and we do not treat polymer-polymer inter-
actions at all. The resulting behavior has a strong theoretical foundation (e.g., Mazars
[6]) and is therefore important for algorithm validation, but does not respect the
correct non-crossing physical behavior of real molecules.

Furthermore, macromolecules like DNA are charged and chemically active. They
interact through screened Coulombic interactions and migrate in response to imposed
electric fields. In addition, microfluidic separators have been designed based on the increase
of residence time with molecule length in packed bed and pillared array geometries, or
through chemically mediated residence time enhancement achieved by binding selective
proteins to channel surfaces.Thesephysical effects are characterizedby intra-polymer, inter-
polymer, and polymer–surface interaction potentials that may be long-ranged.

In this paper we will explore the rod-crossing problem using rigid constraints.
An alternative approach is to use short-range or ‘‘soft’’ potentials, to achieve the same
ends. We have explored those methods also, but the focus of this paper is the
implementation of ‘‘hard’’ constraints. A preliminary version of this work can be
found in Bybee et al. [7].

ALGORITHMIC APPROACH

We present here a new hard constraint algorithm, which enforces the non-
crossing constraint by elastically bouncing the polymer when it comes in contact
with itself. This approach to rod-rod non-crossing is similar to that used to prevent
polymer-surface crossing in microfluidic post array channels [1].

122 D. TREBOTICH ET AL.
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Rod–Rod Uncrossability Constraint

The rod–rod uncrossability constraint works by detecting rod–rod collisions
and treating them as elastic collisions between infinitely thin rods. It is similar to
the bead–surface uncrossability constraint already implemented in Trebotich
et al. [1]. For simplicity of exposition the algorithm in 3D is outlined below as
an extension to the existing algorithm in [1]. Steps 1, 2, and 4 are described in
more detail in [1]. The ideas for steps 3a-3d have been taken from [9]. In that
work bonds are considered as elastic bands between bonded particles. When any
two of these elastic bands make contact, an entanglement point is created which
prevents them from crossing. We call this a hard constraint algorithm as it is an
end member of a classical smooth potential that requires no parameter tuning.

The polymer is represented by a series of beads connected by rigid rods. The
bead positions and velocities are given by x and v respectively. Rod i is defined as the
line segment from bead i to bead i þ 1, or from xi to xiþ1.

For each time step, beginning with xn and vn:

1. Calculate the unconstrained motion to obtain x* and v*.
2. Calculate the motion subject to the rod length constraint to obtain x† and v†.
3. Calculate the motion subject to the rod-rod uncrossability constraint to obtain x‡

and v‡. The details of this step are as follows:

Calculate v�t, the bead velocities over the current time step

v�t ¼ ðxy � xnÞ=�t

so that the time-linear trajectory of each bead over the current time step is

x ¼ xn þ v�tt t 2 0;�tð Þ ð1Þ

Repeatedly loop through all rod pairs until no more collisions are detected. For
each pair of rods i and j:

3a. Calculate the triple product Vij at times 0 and �t where

Vij ¼ xi � xj
� �

� xiþ1 � xið Þ � xjþ1 � xj
� �� �

ð2Þ

The value of Vij will be zero if the infinite lines containing the rods
intersect or are parallel. Therefore, if the value of Vij changes sign over
the time step, a possible rod-rod crossing has occurred. Otherwise, proceed
to step 3k.

3b. Calculate t, the time of crossing. Substituting the time-linear trajectories of
(1) into (2) gives a third-order polynomial in t for Vij. The smallest root of
this polynomial in the range (0,�t) will be t.

To simplify the calculation, let

� ¼ xi � xj ¼ �0 þ �1t

� ¼ xiþ1 � xi ¼ �0 þ �1t

� ¼ xjþ1 � xj ¼ �0 þ �1t

PARTICLE INTERACTIONS IN DNA-LADEN FLOWS 123
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where

�0 ¼ xn
i � xn

j

�1 ¼ v�t
i � v�t

j

�0 ¼ xn
iþ1 � xn

i

�1 ¼ v�t
iþ1 � v�t

i

�0 ¼ xn
jþ1 � xn

j

�1 ¼ v�t
jþ1 � v�t

j

The coefficients of the polynomial Vij ¼ a3t
3 þ a2t

2 þ a1t þ a0 are then given by

a0 ¼ �0 � �0 � �0ð Þ
a1 ¼ �0 � �1 � �0ð Þ þ �1 � �0 � �0ð Þ þ �0 � �0 � �1ð Þ
a2 ¼ �1 � �1 � �0ð Þ þ �0 � �1 � �1ð Þ þ �1 � �0 � �1ð Þ
a3 ¼ �1 � �1 � �1ð Þ

3c. Calculate xt, the bead positions at time t.

x� ¼ xn þ v�t�

3d. Calculate �, the point of intersection at time t, by solving the follow-
ing set of equations:

� ¼ x�i þ �i x�iþ1 � x�i
� �

¼ x�j þ �j x�jþ1 � x�j

� �

where li and lj define the point of intersection between the lines containing rods i
and j respectively. If (0� li� 1) and (0� lj� 1) then the point of intersection lies
on both rods and a rod-rod crossing has occurred. Otherwise, proceed to step 3k.
3e. Calculate n, the unit vector normal to the plane formed by the two rods at

time t

n ¼
x�iþ1 � x�i
� �

� x�jþ1 � x�j

� �

x�iþ1 � x�i
� �

� x�jþ1 � x�j

� ����
���

3f. Calculate v�t
rel, the relative velocity of the intersection point over the current

time step

v�t
rel ¼ v�t

j � v�t
i

� �
þ �j v�t

jþ1 � v�t
j

� �
� �i v�t

iþ1 � v�t
i

� �

3g. Calculate vcol, bead velocities after collision

vcoli ¼ v�t
i þ 2 1� �ið Þ n � v�t

rel

� �
n

vcoliþ1 ¼ v�t
iþ1 þ 2�i n � v�t

rel

� �
n

vcolj ¼ v�t
j þ 2 1� �j

� �
n � v�t

rel

� �
n

vcoljþ1 ¼ v�t
jþ1 þ 2�j n � v�t

rel

� �
n
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3h. Update positions for beads i, i þ 1, j, and j þ 1

xz ¼ x� þ �t � �ð Þvcol

3i. Calculate v
y
rel, the relative velocity of the intersection point using velocities at

the end of time step

v
y
rel ¼ v

y
j � v

y
i

� �
þ �j v

y
jþ1 � v

y
j

� �
� �i v

y
iþ1 � v

y
i

� �

3j. Update bead velocities at the end of the time step

vzi ¼ v
y
i þ 2 1� �ið Þ n � vyrel

� �
n

vziþ1 ¼ v
y
iþ1 þ 2�i n � vyrel

� �
n

vzj ¼ v
y
j � 2 1� �j

� �
n � vyrel
� �

n

vzjþ1 ¼ v
y
jþ1 � 2�j n � vyrel

� �
n

3k. If no collision occurs, then for beads i, i þ 1, j, and j þ 1

vz ¼ vy

xz ¼ xy

4. Calculate the motion subject to the bead–surface uncrossability constraint to
obtain xn þ 1 and vn þ 1.

RESULTS AND DISCUSSION

We have simulated a variety of fluid-polymer systems with this model. In simula-
tions where complex fluid geometries occur, polymer-surface interactions are based on a
level set representation of the domain boundary. The fluid dynamics simulation uses an
embedded boundary formalism, with its own representation of the domain boundary.
When sufficiently resolved, these representations are indistinguishable. Numerically, the
differences converge at second order in grid spacing.

The hard constraint approach seems to be subject to a numerical stability
problem which necessitates that the polymer dynamics set the time step, rather than
the fluid dynamics. With a 100-bead polymer we find the polymer and fluid time steps
to be comparable. But, with 200 beads the stable polymer time step is only 1/10 of the
fluid-controlled value.

In order to demonstrate the hard constraint algorithm in 3D we present results
for the particle algorithm alone, decoupled from the time-dependent fluid algorithm.
Figure 1 is a time sequence of a bead–rod polymer in 3D with varying particle (bead)
masses being transported by a uniform background flow. Initially the polymer is in a
relaxed, stretched out state. The heavier particles at the head cause the non-trivial
behavior as the polymer begins to tangle in time.

Figure 2 is a time sequence of single polymer transport in a 2Dmicroscale flowwith
a cylindrical pillar obstruction that demonstrates intra-polymer and polymer–structure

PARTICLE INTERACTIONS IN DNA-LADEN FLOWS 125
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interactions using the smooth potential hard constraint to prevent rod crossing. Time-
dependent fluid coupling is included. In the first frame the polymer is randomly placed to
be nearly entangled before flowing into the cylinder. Frame 2 shows a short-range

Figure 1. Time sequence of a bead–rod polymer with varying particle masses in 3D. Polymer is initially

stretched out butmoves to a tangled state caused by transport of heavier particles up front in background flow.

Figure 2. Time sequence of 200-bead polymer flowing past a cylinder in 2Dwith streamlines, demonstrating

intra-polymer and polymer-structure interactions using smooth potential. From left to right, top to bottom:

(a) Nearly entangled polymer. (b) Short-range polymer-surface interaction. (c) Acceleration around pillar

due to Brownian perturbation and hydrodynamic drag. (d) More acceleration of the tail and slowing of the

head in stagnation region in wake of pillar. (e) Accelerated tall catching up with stagnated head. (f) Re-

entanglement in wake with multiple intra-polymer interactions.

126 D. TREBOTICH ET AL.
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interaction of the polymer with the cylinder surface while also undergoing inter-polymer
interactions. The polymer accelerates around the pillar in the third and fourth frames due
to Brownian perturbation keeping it off the surface and nudging it out into the boundary
layer where it is pulled by hydrodynamic drag. As the polymer approaches the near-
stagnation wake region behind the pillar the head of the polymer begins to slow down
allowing the tail to catch up in the fifth and then sixth frames. Re-entanglement occurs in
the wake where numerous intra-polymer interactions occur.

CONCLUSION

We have demonstrated a new method based on a rigid constraint system to
prevent rod-crossing in bead-rod polymer models in 3D. The rigid constraint algo-
rithm is the simplest model that captures the essential properties of rod non-crossing.
We use the same elastic collision model for rod non-crossing as in polymer-surface
interactions. The model has a physical basis in early molecular dynamics simulations
where hard spheres represent condensed matter. In this sense, hard constraints are a
parameter-free end-member of parameter-dependent soft potentials.

The new hard constraint algorithm compares well, qualitatively, with expecta-
tions based on previous computations using soft potentials. It is difficult to see the
differences during entanglement without establishing statistics from many simula-
tions, which we did not perform here. Near surfaces, however, it is clear that the hard
constraint allows the polymer to travel more closely to the surface where the fluid
velocity is more nearly zero. At the resolution observable in these results, a smooth
potential and the hard constraints described here give essentially identical results
(differences are inevitable due to the stochastic terms in the fluid-particle coupling).

With the addition of these new force interactions, as expected, new highfre-
quency modes are introduced which limit stability and accuracy, necessitating
adaptive time stepping strategies. Our numerical algorithm is computationally
expensive: in each computational time step, an ${/mathcal O}(N^2)$ search is
performed, iteratively. For systems containing a large number of interacting poly-
mers, this computational bottle neck will present difficulties. While the hard con-
straint method eliminates those high-frequency modes which arise from soft
potentials, we nevertheless find evidence of a time-step controlling instability. This
may necessitate adaptive time stepping strategies.We have seen similar behavior as a
side-effect of the Rouse bead-spring polymer model.
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