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ABSTRACT

We present several new results on the kinetic, i.e.,
mesoscale, level of a continuum–kinetic–microscopic ap-
proach to multiscale modeling of complex fluids. We
choose the microscopic level as Kramers’ bead-rod model
for polymers, which we describe as a system of stochastic
differential equations with an implicit constraint formu-
lation. The associated Fokker-Planck equation is then
derived, and adiabatic elimination removes the fast mo-
mentum coordinates. Approached in this way, a com-
paratively simple result is obtained consisting of drift
but no diffusion terms. We demonstrate computation of
viscoelastic stress divergence using this multiscale ap-
proach.
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1 INTRODUCTION

Complex fluids are characterized by microscopic con-
stituents whose internal configuration influences momen-
tum transfer observed at a macroscopic scale in which
the fluid can be considered a continuum. The flow of an
incompressible viscoelastic fluid at macroscopic length
scales is given by the momentum equation

∂u

∂t
+ u · ∇u +

1

ρ
∇P = ν∆u +

1

ρ
∇ · τ , (1)

together with the conservation of mass for an incom-
pressible fluid

∇ · u = 0. (2)

In this formulation, ρν∆u is the divergence of a viscous
(Newtonian) stress tensor, which depends linearly on
the fluid velocity gradients. This term alone accounts
for the rheology of many simple fluids. But, when poly-
mers are suspended in the fluid they contribute an extra
stress τ to the system. To simulate a system like (1,2) a
closure is needed to relate the viscoelastic stress to the
fluid velocity, τ (x, t,u). A variety of macroscopic consti-
tutive closure relations have been proposed to approx-
imate at the continuum level the dynamics associated
with the molecular scale, among which we consider the
class of relations in partial differential equation (PDE)

form. For instance, the Oldroyd-B PDE describes a di-
lute (non-interacting) suspension of infinitely-extensible
springs connected to point masses which interact with
the fluid by Stokes drag. Despite the great simplicity of
this model, it adequately represents the constitutive be-
havior of a class of fluids (Boger fluids) under restricted
flow regimes. The approximation of a polymer by a
spring is motivated by the statistical mechanics result
that a freely-jointed polymer obeys length distribution
statistics that are approximately Gaussian: a long poly-
mer is approximately a spring, and the motive force
is entropic. In flows with large shears, the Oldroyd-
B model overestimates the extension of the polymers,
which is finite for a physical polymer but unbounded
in the entropic spring approximation. A compensating
force can be added to the constitutive model to prevent
overextension, resulting in the FENE-P model. Models
of greater complexity have been proposed to correct lim-
itations of these simple constitutive closures, but there
are limits to the ability of a macroscopic constitutive
model to approximate the dynamics associated with the
large number of degrees of freedom contained in even
simple models of a linear polymer.

This motivates a multiscale approach, where the ex-
tra stress τ will be obtained somehow from a molecular
scale model, and provided as a source term to a numeri-
cal method for (1,2). A pioneering approach along these
lines is the CONNFFESSIT method [7] which represents
dumbbell polymers as a system of stochastic differential
equations (SDE). A drawback of the approach is the
enormous number of SDEs that must be solved for even
a simple system. Mitran [9] introduced two ideas that
improve the performance of such multiscale models: the
association of a kinetic scale between the continuum and
molecular and levels, and the use of time parallelism to
make a very fast implementation using graphical pro-
cessing units.

In prior work [2], [5] we developed new high-order nu-
merical methods for the simulation of a Kramers bead-
rod freely-jointed polymer. That is, a set of N “beads,”
point masses subject to Stokes drag and Brownian mo-
tion, connected by N−1 “rods,” massless objects meant
to keep the beads at constant relative separation. “Freely-
jointed” means the rods can interpenetrate. A single
polymer is given by the following system of constrained



SDEs:

∂xi
∂t

= vi (3a)

∂vi
∂t

= γ(u(xi, t)− vi) + σξi (3b)

‖xi+1 − xi‖ = a. (3c)

Here, ξi is a vector of uncorrelated white noises associ-
ated with bead i, and a is the inter-bead spacing, com-
monly associated with the polymer Kuhn length. The
parameter σ is given by

σ =

√
2γkBT

m
(4)

where m is the mass of a bead. The drag term γ(u−v)
provides a coupling of the macroscopic flow to the mi-
croscale simulation. By itself, this model can calculate
a number of classical results including the mean end-to-
end distance in relaxed flow, velocity correlations along
the chain.

We have also developed numerical schemes for cou-
pling individual polymers with microfluidic flows [11],
[3], [4]. This work, like CONNFFESSIT, couples directly
the continuum and microscale dynamics.

Here, we present progress toward a continuum–kinetic–
molecular multiscale model for dilute freely-jointed poly-
mers in a Newtonian solvent. Kramers’ freely-jointed
model has finite extensibility and possesses a spectrum
of relaxation times which differ by as much as N2 for
an N -bead polymer. Thus, while still highly idealized,
it nonetheless possesses significant complexity and many
more degrees of freedom than any practical macroscopic
closure approximation. The emphasis here will be on
the kinetic (mesoscale) layer of the multiscale scheme.
We present new algorithms for the calculation and time
propagation of this description, and show preliminary
results.

2 THE KINETIC APPROXIMATION

Associated with the constrained SDEs (3) is a Fokker-
Plank equation for the probability density function (PDF)
Ψ(q, t), where q = {x1,x2, ...xN} are the microscale
configuration coordinates. If one could model Ψ, then
one could generate (sample) representative polymer con-
figurations. For example, if Ψ could be evaluated but
has no special form, sampling could occur with Monte
Carlo rejection sampling. If Ψ is known as a Gaussian
mixture model it can be sampled more efficiently. The
ability to efficiently generate samples q, then compute
the fluid stress associated with these samples by mi-
croscale simulation, is one of the efficiencies of Mitran’s
approach. The information associated with millions of
microscale SDEs does not need to be stored: they can
be sampled and discarded if the kinetic PDF is known.

To obtain the Fokker-Plank equation associated with
(3) we first rewrite the system without constraints. This
can be accomplished by incorporating the constraints
as Lagrange multipliers, with value given by an implicit
function [8], [5]. The result can be written in block par-
titioned form

dp = fdt+ gdW (5)

p =

(
q

q̇

)
(6)

f =

(
q̇

F

)
(7)

g =

(
0

Γ

)
(8)

where

Fi = γ(u(xi)−vi) +
[
(∆i−1x)A−1i−1,j − (∆ix)A−1i,j

]
×

[(∆jx) · γ(∆ju−∆jv) + (∆jv) · (∆jv)]

(9)

and

Γi = σ
{[

(∆i−1x)A−1i−1,j−1 − (∆ix)A−1i,j−1
]

(∆j−1x)T−[
(∆i−1x)A−1i−1,j − (∆ix)A−1i,j

]
(∆jx)T + Iδij

}
.

(10)

In these expressions, dW is a vector of DN independent
Wiener derivatives in D dimensions, and A is the (N −
1)× (N − 1) tridiagonal matrix:

Aij =


−2(∆ix) · (∆ix) if i = j

(∆ix) · (∆jx) if |i− j| = 1

0 otherwise.

(11)

∆ix is shorthand for xi+1−xi, etc., and such terms are
understood to be zero if i < 1 or i ≥ N .

Note that we have included momentum in our SDEs,
which implies the applicability of Itô calculus. It is not
uncommon for momentum to be ignored (e.g., [8]) which
then necessitates Stratonovich calculus. See also [6]. We
will find that including momentum at this point leads
to a simple form for the PDF because of the zero block
in g (8).

It follows from (5) and the rules of Itô differentiation
that for any measurable function s(p) there exists the
SDE

ds =

[
f · ∇ps+

1

2
(ggT ) : ∇p∇ps

]
dt+ (g · ∇ps)dW,

(12)
and so in expectation

d〈s〉 =

〈
f · ∇ps+

1

2
(ggT ) : ∇p∇ps

〉
dt. (13)



But, given the PDF, one also has

〈s〉 =

∫
dpΨ(p)s(p) (14)

so

d〈s〉
dt

=

∫
dp
∂Ψ(p)

∂t
s(p) (15)

=

∫
dpΨ(p)

(
f · ∇ps+

1

2
(ggT ) : ∇p∇ps

)
.

Integrate this expression with respect to time, then twice
by parts with Ψ and ∇Ψ zero at infinity. The result is

0 =

∫
dt

∫
dp s

(
∂Ψ

∂t
+∇p · (fΨ)−

∇p(i)∇p(j)

(
1

2
(ggT )ijΨ

))
(16)

giving the Fokker-Planck equation

∂Ψ

∂t
+∇p · (fΨ)−∇p(i)∇p(j)

(
1

2
(ggT )ijΨ

)
= 0 (17)

in the space of coordinates and particle velocity, and
containing both drift and diffusion contributions. Sub-
stituting the block partitions of f (7) and g (8), it is
apparent that the diffusion term is only associated with
the velocity coordinates:

∂Ψ

∂t
= −q̇ · ∇qΨ−∇q̇ · (FΨ) +

1

2
ΓikΓjk

∂2Ψ

∂q̇iq̇j
(18)

where Γ depends on q but not q̇.
At this point we note that the momentum coordi-

nates evolve rapidly relative to the position coordinates,
because of the magnitude of γ. We use adiabatic elim-
ination to remove these fast modes from the Fokker-
Planck equation [10]. For the stationary state of the
fast (momentum) mode we have

∂

∂vi
·
[
−Fi +

1

2
ΓikΓjk

∂

∂vj

]
ψ = 0. (19)

We assume that this holds for each i, so that summa-
tion is not required. This assumption is motivated by
the fact that velocity is very nearly δ-correlated along a
polymer chain [1], [5]. With this assumption,

−Fiψ +
1

2
ΓikΓjk

∂

∂vj
ψ = ci (20)

for some vector ci that is independent of vi. Now inte-
grate (20) with respect to velocity over the entire veloc-
ity space [−∞,+∞]DN :∫

dvci = −〈Fi〉+
1

2
ΓikΓjk

∫
dv∇vj

ψ. (21)

The integral on the right hand side must be zero since
ψ and its gradient must be zero at infinity. Then, if
expectation 〈Fi〉 is bounded, it follows that the integral
on the left hand side must be bounded: ci = 0 and
therefore 〈Fi〉 = 0.

This convenient result is not unexpected. Fi is the
smooth part of the acceleration experienced by bead i,
γ(ui−vi), projected onto the space of accelerations that
satisfy the second derivative of the holonomic constraint
(3c). That 〈Fi〉 = 0 then signifies that subject to con-
straints, 〈vi〉 = ui, which is the behavior anticipated in
the limit γ → ∞ that motivates dropping momentum
in the first place.

With ci = 0, integration of (20) is straightforward,

ψ ∝ exp

(
2ΓikΓjk

∫
dv′

T
j Fi

)
. (22)

With this fast mode determined, the Fokker-Planck dy-
namics (19) reduce to

∂Ψ

∂t
= v̄ · ∇xΨ (23)

with

v̄ =

∫ †
dv vψ (24)

the vector of average velocities. The dagger signifies
that the integral is over the space of velocities consistent
with the constraint. A more formal derivation would
use internal coordinates, but we find that obscures the
essential result.

It can be shown that

v̄ =

∫
dvv exp

(
2ΓikΓjk

∫
dv′

T
j Fi

)
∫
dv exp

(
2ΓikΓjk

∫
dv′Tj Fi

) (25)

is normally distributed with mean u(x) and variance
kBT/m. This is shown by considering velocities on the
velocity constraint manifold. The projection of arbi-
trary velocities v′ onto the constraint manifold is (see
[5])

vi = v′i +
[
(∆i−1x)A−1i−1,j − (∆ix)A−1i,j

]
(∆jx) · (∆jv

′
β)

=
1

σ
Γikv

′
k. (26)

Therefore, subject to the restriction that all velocities
in (25) are on the constraint manifold,

ΓΓT = σ−2I =
m

2γkBT
I. (27)

Then, with F the projection of the smooth acceleration,

2(ΓikΓjk)−1
∫
dv′

T
j Fi = − m

2kBT
(u− v)Ti (u− v)j ,

(28)



and so it follows that (25) is normally distributed with
mean u and variance kBT/m.

Result (23) has a trivial solution,

Ψ(x, t+ ∆t) = Ψ(x− v̄∆t, t) : (29)

the PDF is advected with velocity v̄ ∼ u.
For the solution, we propose the following two stage

process. First, one advects the PDF using the center-
of-mass velocity, ucom:

Ψadv(x, t+ ∆t) = Ψ(x− ucom∆t, t). (30)

Next, account for the variation of fluid velocity along the
polymer chain, and the variation in velocity associated
with the distribution (25):

Ψ(x, t+ ∆t) ≈ Ψadv(Px(x−∆tδu), t+ ∆t) (31)

where

δui = (xi − xcom) · ∇u + ~N(0, 1)
√
kBT/m (32)

is the velocity perturbation associated with bead i, ~N(0, 1)
is a vector of Gaussian normal deviates with mean 0 and
variance 1, and δu is the vector comprised of all δui. Px
is the projection onto the constraint (3c).

By means of this algorithm, one has two methods for
computing Ψ in Mitran’s continuum–kinetic–molecular
framework: (i) advect it as described above, or (ii) gen-
erate an ensemble of polymers at t, march these forward
in time to t+∆t with the algorithm of [5], then find the
PDF at t+ ∆t that models the updated molecular con-
figuration. Together these can be applied in a predictor-
corrector manner, with the microscopically-derived PDF
being the more trustworthy.

Figure 1: stress gradient, x component, for a 2:1 con-
traction with Re ≈ 1.
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