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Abstract

We present simulation results from a computational model of

polymer flow in microfluidic devices. This work is important

because computational models are needed to design minia-

turized biomedical devices which leverage microfluidics tech-

nology for many significant applications including pathogen

detection as well as continuous monitoring and drug deliv-

ery involving the processing of polymer molecules such as

DNA. Currently, advanced algorithms in design tools are

non-existent but necessary to understand the complex fluid

and polymer dynamics involved in biological flow at small

scales. Our model is based on a fully coupled (including

reverse coupling from particle to fluid) fluid-particle numer-

ical algorithm with both stochastic and deterministic com-

ponents in a bead-rod polymer representation. The parti-

cle method is strong second-order accurate, as is the CFD

solver. The latter provides a high performance computing

platform based on adaptive, embedded boundary methods

for these computationally intensive problems with multiple

scales. We demonstrate our method on the test problem of

flow of DNA molecules in a 2D entropic trap, the square well

geometry of which is fundamental component in microfluidic

processing yet complicated enough to elicit complex flow fea-

tures relevant to design.

1 Background and Motivation

Understanding complex biological flows through ad-
vanced algorithmic modeling is critical to many biomed-
ical applications of significance in an array of indus-
tries such as targeted drug delivery in pharmaceuticals,
continuous monitoring and diagnostics in biotechnology,
and fuel cells in energy. These applications will lever-
age state-of-the-art miniaturized technology, develop-
ment which requires understanding of the fundamen-
tal physics and chemistry of biological fluids at much
smaller than normal scales to design and optimize trust-
worthy working devices, and to get them to market more
quickly and with less cost.
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Micro Electro-Mechanical Systems (MEMS) tech-
nologies are at the forefront of engineering practice for
the design of integrated fluidic control and (bio)chemical
sensing devices. Microscale fluidic processors allow for
portability, networking, low power and minimal reagent
consumption and faster chemical reactions. However,
design and fabrication cycles are lengthy because trial-
and-error design is time consuming. Design platforms
will require predictive capabilities that incorporate ad-
vanced modeling to understand the fundamental phys-
ical processes of complex fluids in these devices and to
predict their behavior.

Modeling complex biological fluids is a challenge
because their non-Newtonian constitutive behavior is
not easily represented. For example, the presence of
long-chain polymers or macromolecules in a Newtonian
solvent (e.g., Boger fluid, DNA) can cause a viscous
fluid to demonstrate elastic behavior even at micro-
molar concentrations [1]. Furthermore, the introduction
of macromolecules to a solvent can introduce a shear-
rate dependence to the viscosity and cause what is
known as shear-thinning. In either constitutive case the
velocity field in flows through a simple planar channel or
axisymmetric tube is altered from the classical parabolic
Newtonian flow profile due to change in pressure and
evolution of significant secondary flows [2].

The problem is further complicated when the flow of
biological fluids is restricted to the small length scales of
state-of-the-art biomedical devices. At these scales new
fluid mechanical and modeling issues arise because (1)
surface-to-volume ratios are extremely large; and (2)
characteristic lengths of the macromolecules/cells ap-
proach those of the flow geometry. For example, a highly
concentrated solution of suspended polymer molecules
may be represented at large, system-level scales with
a continuum viscoelastic constitutive model (e.g., [3]).
However, when the geometry length scales are compa-
rable to the inter-polymer spacing a continuum approx-
imation is no longer appropriate, and a discrete molec-
ular approximation is needed. In addition, when the
length scale of the geometry is comparable to the length
of an individual polymer macromolecule, new physical
behavior may be observed near surfaces where velocity
and concentration gradients tend to be large and macro-
molecular shear degradation or even breaking (scission)
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can occur as a result [2]. Discrete representation of
particles suspended in a fluid is needed in this case to
predict the fate of individual molecules. Furthermore,
the processes of interest involve physical phenomena not
accounted for in conventional continuum formulations
alone. Examples include the effects of flow on confor-
mation of DNA, and the reciprocal effects of DNA con-
formation on flow [4, 5], as well as the effects of shear on
orientation of globular proteins. There is strong experi-
mental evidence in support of the hypothesis that these
molecular-scale processes have substantial system-level
(engineering device scale) effects.

As a practical example, the biochemical nature of
pathogen detection requires microprocessing of large
molecules such as DNA or proteins. Bacterial DNA is
approximately 1-2 mm long when stretched out in solu-
tion. In a standard amplification/sequencing micropro-
cessor, 1010 molecules will have to pass through chan-
nels with characteristic length scales of 10-100 µm. The
large molecules in the flow will not only affect the fluid
dynamics and performance of the device, but the fluid
forces can damage (break) the biomolecules required for
the bioassay. This dynamic can be beneficial in a DNA
amplification device but detrimental in a drug deliv-
ery system. (While protein molecules are significantly
smaller than DNA molecules and do not exhibit all of
the conformational changes of DNA, there are strong
indications that protein molecules do not survive flow
in micro-environments unscathed, possibly as a result
of interactions with channel surfaces.) We have also
applied discrete polymer models to the problem of DNA
extraction in a polymerase chain reaction (PCR) cham-
ber as part of a pathogen detection system. One of the
primary extraction techniques being pursued by indus-
try is a packed bed reactor, which is essentially a small
tube packed with microscale glass beads. The physi-
cal model presents a three-dimensional (3D) multiscale
problem where DNA molecules must be resolved along
with the flow geometry. A second extraction design is a
pillar chip which is an array of cylindrical obstructions
in a shallow microchannel. Though a 3D problem, this
latter design lends itself to 2D models. The restriction
to 2D is useful and can be reduced to model a single
molecule traveling through a smaller section of the ar-
ray. This is the model problem where we have honed
the algorithm development to model relevant physics of
the flow for the full 3D problem [8, 9].

In this paper we consider flow of a long-chain poly-
mer in a 2D “entropic trap”. An entropic trap is a
microchannel that is composed of a number of square
wells in series. This configuration has been shown to be
more efficient for size separation of long-chain polymers
such as DNA over the standard technique of gel elec-

trophoresis [7]. Though a simple geometry an entropic
trap contains enough features (expansion and contrac-
tion sections of a channel) to serve as an appropriate
testbed for advanced algorithm development as far as
polymer flow is concerned. More advanced configura-
tions, and, ultimately, a full device simulation, would
be the next step in this current work.

2 Technical Approach

In our model we will consider discrete polymers sus-
pended in an incompressible viscous solvent. We use
a hybrid continuum-particle based on the fluid-polymer
coupling algorithm of Kallemov et al. [14, 9, 8] for in-
compressible polymer-laden flows in irregular microscale
geometries. Polymers are represented as beads and
rods, that is, a collection of point masses connected by
constrained interparticle spacing. Each particle is sub-
ject to a hydrodynamic drag force from the fluid, and
Brownian motion. The fluid in turn responds to the ef-
fect of the particles via a cloud-in-cell model of the dis-
crete Dirac delta function. We note that the effect of the
backward coupling is not that large in the dilute limit
due to the atomic nature of the particles (small mass).
However, if the solution is more concentrated or the par-
ticle masses are heavier then the force on the Newtonian
solution is apparent. We will demonstrate this behav-
ior. Irregular geometry boundaries are treated with an
embedded boundary, or cut-cell, Cartesian grid method
[10, 9]. Incompressibility is enforced and velocity and
pressure evolved by a projection method [11].

The equations of motion for our model are incom-
pressible Navier-Stokes equations coupled to Langevin
particle dynamics through an extra stress or source term
in the momentum equation:

∂u

∂t
+ (u · ∇)u +

1

ρ
∇P = ν∆u +

1

ρ
F(2.1)

∇ · u = 0.(2.2)

These equations describe an incompressible fluid of den-
sity ρ, pressure P , velocity u, and Newtonian viscosity
ν, subject to an additional body force F. On the domain
boundary δΩ we have the no-slip boundary condition
u = 0.

The polymer solute is represented as a collection of
point masses each subject to Newton’s second law of
motion

mα

d2xα

dt2
= mα

dvα

dt
= fα.(2.3)

Here mα is the mass of the αth particle, xα is its
coordinate, and vα is its velocity. The particle is subject
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to a force fα which combines a Stokes drag term with a
stochastic (Brownian) perturbation,

fα = mαγ(u(xα) − vα) + FBα.(2.4)

Here, 1/γ is a phenomenological relaxation time (mγ =
6πµb for a Stokes sphere of radius b) , and FB is the
stochastic force

〈FBα(t)〉 = 0(2.5)

〈FBα(t)FBα(t′)〉 = σ2

αIδ(t − t′),(2.6)

where σα =
√

2mαγkBT with kB being Boltzmann’s
constant and T the temperature.

The force F acting on the fluid is

F(x) = −
∑

α

fαδǫ(x − xα),(2.7)

where δǫ represents a smoothed Dirac delta function
with length scale ǫ.

In addition to the incompressibility condition (2.2)
we have three additional constraints on the particles: (i)
interparticle spacing is constant

‖xα − xβ‖ = a(2.8)

if particles α and β represent adjacent nodes in a bead-
rod polymer representation; (ii) particles cannot pass
through a physical boundary;

xα ∈ Ω,(2.9)

and (iii) rods cannot cross.
We use the method of Trebotich et al. [9, 8] to

advance the fluid and particles forward in time. For
the fluid solver we use the high performance adaptive,
embedded boundary method of [10]. The algorithm is
a second-order predictor-corrector method based on the
projection method [11] with higher-order treatment of
the advection terms [12, 13]. Particle advancement is
accomplished by folding in a new strong second-order
method [14, 15] into the fluid-predictor-corrector as
in [9]. The particle timestep is optimized using the
technique of Miller and Trebotich [17] such that its
magnitude is on the order of the fluid timestep which is
only limited by the advective Courant-Friedrichs-Lewy
(CFL) condition.

3 Results

We demonstrate our method on the flow of a dilute
polymer fluid in an entropic trap. An entropic trap
is essentially a series of square wells that can be used
to separate long-chain polymers of different lengths
in biochemical processing. This type of separation

is critical to the success of advanced single-molecule
detection devices. Though not a full device the entropic
trap test problem is a canonical one for modeling
microscale flows of complex fluids. Specifically, it is a
mechanical technique for size separation of polymers in
the absence of chemistry and electrokinetics. It contains
geometric singularities which can elicit singularities in
solution, a known challenge to numerical modeling.
We also note that it is our goal to model full devices
and that the results presented here are a step in that
direction.

We consider flow of 2 polymer strands in a square
well microchannel. We use an operating Reynolds
number of one, which is typical of a real flow-through
device such as a pathogen detection system [18]. Sample
calculations for the 45-node polymer approximation are
displayed in Figs. 1-4. Each polymer node is subjected
to drag force from the fluid and stochastic Brownian
motion according to Eq. 2.4. The interparticle spacing,
a, is taken to be the so-called Kuhn length, after [16],
which is the related to the flexibility of the chain.
The Kuhn length can be experimentally measured,
e.g., by light scattering [20], NMR spin relaxation
[21], or even single-molecule atomic force microscopy
[19]. For DNA, the measure is ≈ 100nm. In our
preliminary results we do resolve this scale. The
timestep for each iteration is subjected to the CFL
condition, so time intervals between each screenshot
is not necessarily equal. Although it is more natural
to consider initial polymer configuration as a random
coil we chose simple initial polymer configurations for
demonstration purposes. The background color of the
figures is the horizontal fluid velocity where blue is the
maximum value as seen in regions of fluid acceleration
and red is 0, or slightly less as in the recirculation zones.

Fig. 1 demonstrates the dynamics of two polymers
introduced into a square well channel. In this flow sce-
nario, neither strand gets trapped. Fig. 2 demonstrates
the trapping of a single polymer due to fluid forces while
the other escapes the channel. We were also able to sim-
ulate two polymers in an entropic trap with two wells
whose configuration is similar to that in [7]. These re-
sults were obtained for fictitious polymer parameters for
demonstration purposes (Fig. 3).

As a proof-of-concept for full (reverse) coupling
we performed calculations for an unrealistic “massive”
polymer so that the contribution from the force acting
on the fluid is discernible. The result is presented
in the Fig. 4 where the surrounding fluid velocity is
highly disturbed. This effect is important to model in
more concentrated polymer fluids where large numbers
of molecular masses can have an effect the fluid.
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4 Conclusions

We have demonstrated a simulation capability for mod-
eling flow of polymer-laden fluids such as DNA in mi-
croscale environments. A higher-order particle method
has been coupled to an adaptive incompressible flow
solver in complex geometry which has been optimized
for high performance. This coupling is done through
source terms for extra stress in the momentum equation
and at no expense to the fluid timestep which enables
long time simulation to access experimental timescales
for validation. We have demonstrated the trapping of
a polymer in two square well microchannel configura-
tions. These “entropic trap” type devices are not com-
plete industrial devices but are canonical components
that are typical of channels in lab-on-a-chip micropro-
cessors. Also, we have chosen polymer parameters, such
as interparticle spacing, that are not completely realistic
(cf. Kuhn length of DNA) but sufficient for demonstra-
tion purposes. More importantly, we have for the first
time shown the reverse coupling effect of particles on
surrounding fluid by simulating fictitious massive parti-
cles. The success of the full coupling will be important
in future applications of this capability in real devices
where the polymer concentrations are much larger than
the dilute limit considered here. With that, compar-
isons can be made with continuum viscoelastic repre-
sentations of polymer constitutive behavior, and a hier-
archical approach to modeling these complex fluids can
be formulated.
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Figure 1: Two polymers flowing over a square well in a
microchannel. Nnodes = 45, m = 1, constraint length
= 6 ·10−4, γ = 102, σ = 1. Time: 0, 0.235, 0.496, 0.757,
1.017, 1.174. Background color is horizontal velocity,
blue (max), red (min).

Figure 2: “Trapping” a polymer into the square well.
Nnodes = 45, m = 1, constraint length = 1 · 10−2,
γ = 104, σ = 5. Time: 0, 0.235, 0.496, 0.758, 1.226.
Background color is horizontal velocity, blue (max), red
(min).
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Figure 3: Two polymers flowing through two square
wells, similar to entropic trap device in [7]. Nnodes =
45,m = 1, constraint length = 5 · 10−3, γ = 104, σ = 5.
Time: 0, 1.35, 1.91, 2.16, 2.70, 4.04. Background color
is horizontal velocity, blue (max), red (min).

Figure 4: Velocity field for a fictitiously heavy polymer
flowing in a square well microchannel demonstrating
reverse coupling effect. Nnodes = 45, m = 103,
constraint length = 6 · 10−4, γ = 1, σ = 5. Time:
0, 0.01, 0.016, 0.021, 0.029, 0.041. Background color is
horizontal velocity, blue (max), red (min).
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