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AN ADAPTIVE FINITE VOLUME METHOD
FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS

IN COMPLEX GEOMETRIES

DAVID TREBOTICH AND DANIEL T. GRAVES

We present an adaptive, finite volume algorithm to solve the incompressible
Navier–Stokes equations in complex geometries. The algorithm is based on the
embedded boundary method, in which finite volume approximations are used to
discretize the solution in cut cells that result from intersecting the irregular bound-
ary with a structured Cartesian grid. This approach is conservative and reduces
to a standard finite difference method in grid cells away from the boundary. We
solve the incompressible flow equations using a predictor-corrector formulation.
Hyperbolic advection terms are obtained by higher-order upwinding without
the use of extrapolated data in covered cells. The small-cell stability problem
associated with explicit embedded boundary methods for hyperbolic systems is
avoided by the use of a volume-weighted scheme in the advection step and is
consistent with construction of the right-hand side of the elliptic solvers. The
Helmholtz equations resulting from viscous source terms are advanced in time
by the Crank–Nicolson method, which reduces solver runtime compared to other
second-order time integrators by a half. Incompressibility is enforced by a second-
order approximate projection method that makes use of a new conservative cell-
centered gradient in cut cells that is consistent with the volume-weighted scheme.
The algorithm is also capable of block structured adaptive mesh refinement to
increase spatial resolution dynamically in regions of interest. The resulting overall
method is second-order accurate for sufficiently smooth problems. In addition,
the algorithm is implemented in a high-performance computing framework and
can perform structured-grid fluid dynamics calculations at unprecedented scale
and resolution, up to 262,144 processor cores. We demonstrate robustness and
performance of the algorithm by simulating incompressible flow for a wide range
of Reynolds numbers in two and three dimensions: Stokes and low Reynolds
number flows in both constructed and image data geometries (Re� 1 to Re= 1),
flow past a cylinder (Re= 300), flow past a sphere (Re= 600) and turbulent flow
in a contraction (Re= 6300).
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1. Introduction

In this paper, we describe a conservative, high-resolution algorithm for the incom-
pressible Navier–Stokes equations in complex geometries. The primary outcome of
this work is a simulation capability that can be applied to a wide range of flows
where high resolution is sought — from low Reynolds number flow in geologic or
engineered porous media, for example, to direct numerical simulation of turbulence.
Our approach is based on an adaptive, finite volume embedded boundary method.
In the context of a complete description of the overall algorithm, we present several
novel numerical techniques including: a volume-weighted scheme for finite volume
discretizations that avoids the small-cell problem associated with hyperbolic solvers
based on cut cell methods and a stable second-order time integration method that is
faster than other second-order schemes used in the context of embedded boundary
methods. We demonstrate second-order convergence of the algorithm. We apply the
algorithm to benchmark flow past a cylinder in 2D and 3D, flow past a sphere in 3D
and high Reynolds number flow in a 2D contraction as well as Stokes flow and low
Reynolds number flow in packed bed geometries and realistic subsurface materials.
We also demonstrate the adaptive mesh refinement capability of the algorithm as
well as scalable performance to 262,144 processor cores.

1.1. Equations of motion. We consider the incompressible Navier–Stokes equa-
tions with constant density:

∂u
∂t
+ (u · ∇)u =−∇ p+ ν1u, (1-1)

∇ · u = 0, (1-2)

where u is the fluid velocity, ∇ p is the pressure gradient and ν is the kinematic
viscosity. To close the system, we specify boundary conditions for a bounded inflow-
outflow problem. For example, for flow in the x direction in a two-dimensional
channel, the boundary conditions are, at inflow,

u = (3
2 u(1− y2/a2), 0),

∂p
∂x
= 0, (1-3)

where u is average inflow velocity and a is half the width of the channel in the
y direction; at solid walls,

u = 0,
∂p
∂y
= 0; (1-4)

and at outflow,
∂u
∂x
= 0, p = 0. (1-5)

Given initial conditions u0
= u(x, 0) and p0

= p(x, 0), the system of equations
defined by (1-1)–(1-5) constitutes an initial boundary value problem (IBVP) that can
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Figure 1. Left: example of an irregular geometry on a Cartesian grid. Middle: close-up
view of embedded boundaries “cutting” regular cells. Right: single cut cell showing
boundary fluxes. The shaded area represents the volume of cells excluded from the domain.
Dots represent cell centers. Each “×” represents a centroid.

be solved by a variety of methods (e.g., immersed boundary [27], ghost fluid [18]
or discontinuous Galerkin [46]). We are ultimately interested in efficient, scalable
computations to obtain high resolution for a wide range of Reynolds number flows in
complex geometries. We address this problem with a predictor-corrector projection
formulation based on a finite volume, embedded boundary method with adaptive
mesh refinement.

1.2. Numerical approach.

1.2.1. Embedded boundary method. Cartesian grid methods have become an in-
creasingly popular modeling approach to solving partial differential equations
(PDEs) in complex geometries. There are several Cartesian grid approaches (e.g., im-
mersed boundary [42], immersed interface [28] and ghost fluid [18]); however, we fo-
cus on the cut cell approach, which is based on finite volume approximations. A cut
cell, or embedded boundary, method refers to a finite volume discretization in irregu-
lar cells on a Cartesian grid that result from the intersection of the boundary and the
rectangular cells of the grid (see Figure 1). Conservative numerical approximations
to the solution can be found from discrete integration over the nonrectangular control
volumes, or cut cells, with fluxes located at centroids of the edges or faces of a control
volume. This approach has been used as the basis for second-order accurate methods
for elliptic, parabolic and hyperbolic PDEs in two and three dimensions [21; 32; 15].

One of the advantages of the method is that the problem of generating the
description of complex geometry on the grid (starting from, for example, surface
tessellations produced by a CAD system or implicit function representation of
x-ray microtomography images) has been made more tractable [1; 29]. Another
advantage of the embedded boundary method is that it is amenable to adaptive
mesh refinement (AMR) [10]. Block structured AMR is a technique to add grid
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resolution efficiently and dynamically in areas of interest while leaving the rest of
the domain at a coarser resolution. AMR was originally applied to finite difference
methods for inviscid shock hydrodynamics [7] and has been extended to inviscid,
incompressible flow [30] and viscous flow [2; 31] in rectangular domains. AMR has
been combined with embedded boundary methods to model inviscid and viscous
compressible flows in complex geometries [40; 15; 19].

For incompressible flows, embedded boundary methods have been mostly applied
to inviscid flows (e.g., [3]). As attractive as cut cell methods are for efficient gridding
of complex geometries, these methods are still gaining ground in the engineering
community for modeling of incompressible viscous flows perhaps due to the high
resolution that is required in and around cut cells to resolve viscous boundary layers.
Therefore, AMR and high-performance computing have become necessary partners
for cut cell methods to be effective 3D modeling tools. Furthermore, discussion of
such methods usually centers around the “small-cell problem” due to the arbitrary
nature of the cut cell approach; also of importance are accuracy of gradients and
higher-order strategies.

Several methods have been proposed for incompressible viscous flow using the
cut cell approach. In [60], a single-grid (nonadaptive) finite volume method is used
for 2D incompressible viscous flows and is demonstrated on an array of cylinders in a
channel. In [43], adaptivity is combined with a volume-of-fluid method and applied
to practical engineering problems in 3D. Cell-merging is used to treat the small-cell
problem. Second-order accuracy is demonstrated with particular attention given
to the pressure gradient. In [25], a cut cell method on a staggered grid is applied to
a moderate Reynolds number flow in 3D. A “cell-linking” method is proposed that
links small cells with a master cell, placing the cell a small distance from the master
and inducing a high-diffusion flux that forces the two velocities to take the same
value. A cell-merging technique was used in [13] as part of a cut cell projection
method. In a precursor [52] to the work presented here, an embedded boundary
method was used to model fluid-particle flow through a packed bed geometry. This
work was later generalized to AMR in a computationally efficient framework using
novel stenciling techniques in cut cells [53]. The small-cell problem was addressed
by a linear hybridization of conservative and nonconservative estimates of the
convective derivative akin to [11; 6] with redistribution of the unconserved mass.

1.2.2. Projection method. Projection methods address the time-discretization issue
of the constrained evolution equations of incompressible flow. These methods are
based on the Hodge–Helmholtz decomposition of a vector field into a divergence-
free part and a gradient of a scalar field, effectively separating the vortical dynamics
induced by a viscous, divergence-free velocity field from the potential flow problem.
Projection methods have taken several different paths since Chorin’s original method
was introduced [12], primarily depending on the choice of scheme for higher-order
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discretization of the nonlinear advection term (e.g., [24; 55]). Our approach is
based on the work of Bell, Colella and Glaz (BCG) [4] and the family of methods
that followed (e.g., [26; 2; 49; 31]). The BCG method makes use of high-resolution
finite difference methods for hyperbolic PDEs, such as Godunov or upwinding
schemes, combined in a fractional step approach with fast iterative methods for
elliptic and parabolic PDEs to achieve second-order spatial and temporal accuracy.
BCG was made more robust for larger Courant–Friedrichs–Lewy (CFL) numbers
with the introduction of an intermediate marker-and-cell (MAC) projection in the
advection step [5]. In [49], the BCG method was extended to time-dependent
domains using quadrilateral, mapped grids and a consistent decomposition of the
velocity field that standardized the implementation of boundary conditions for
projection methods. The projection method was generalized to a nonadaptive
embedded boundary approach for time-dependent domains in [34].

In this paper, we combine these methods — adaptive, finite volume and projec-
tion — using the predictor-corrector projection formulation in [49], the adaptive
approach in [31] and the computational fluid dynamics tools for adaptive embedded
boundary methods in [53] to solve the incompressible Navier–Stokes equations
in complex geometries. The algorithm is implemented in the Chombo software
framework, which supports adaptive, embedded boundary methods and also enables
large scale computations (http://chombo.lbl.gov). The resulting algorithm is conser-
vative, second-order accurate and scalable to 262,144 processor cores. The central
new idea of the algorithm is a volume-weighted scheme that avoids the small-cell
problem associated with explicit embedded boundary methods and leads to better
stability properties than previous approaches in [53; 15; 52].

We organize the discussion of the algorithm as follows. The finite difference
algorithm is described in its entirety in Section 2. The embedded boundary, finite
volume method is described in Section 3 for the case of cut cells where the dis-
cretization requires special stencils that differ from the finite difference method.
For ease of exposition, the algorithm is described in 2D; the 3D discretization is
included if it is not an obvious extension from 2D. We include brief descriptions of
algorithm modifications needed for AMR throughout the discussion and particularly
for hyperbolic and elliptic discretizations near coarse-fine interfaces. Accuracy of
the method, performance measurements and simulation results are presented in
Section 4. Conclusions are summarized and discussed in Section 5.

2. Algorithm discretization

A second-order accurate in time discretization of the evolution equation (1-1) is

U n+1
=U n

+1t (ν1U n+1/2
− (U · ∇)U n+1/2

−∇ pn+1/2),

http://chombo.lbl.gov
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where U n is an approximation of the velocity field at the discrete time tn
= tn−1

+1t .
We choose a second-order upwind method for hyperbolic terms, a second-order
implicit discretization of parabolic terms and an approximate projection method
to enforce incompressibility with special centering of the pressure gradient. We
combine these methods in a semi-implicit predictor-corrector formulation based
on [49] to advance the solution.

2.1. Temporal discretization. The momentum equation (1-1) can be formulated
as a parabolic equation of the form Ut =L(U )+ f (U ), where L is a second-order
elliptic operator such as the Laplacian. Second-order accuracy in time can be
achieved by the Crank–Nicolson method for parabolic equations as in [4]. It has
been previously reported that, in the presence of embedded boundaries, the Crank–
Nicolson scheme is unstable for parabolic equations, and in particular, when the
embedded boundary is moving, coefficients are strongly varying or discontinuities
exist in the solution [32]. Instead, the Runge–Kutta method of [54] is recommended
to achieve second-order accuracy. In practice, we have not experienced such
instabilities with Crank–Nicolson for stationary boundaries nor in current work with
moving boundaries (e.g., [34]). Furthermore, significant computational savings are
gained from the use of Crank–Nicolson, which requires only D (number of space
dimensions) solutions to the Helmholtz problem while the second-order Runge–
Kutta method as described in [54] requires 2D solutions to the Helmholtz problem.

The Crank–Nicolson discretization is

(
I −

ν1t
2
1
)

U n+1,∗
=

(
I +

ν1t
2
1
)

U n
+1t f n+1/2, (2-1)

f n+1/2
=−(U · ∇)U n+1/2

−∇ pn−1/2. (2-2)

The intermediate velocity, U n+1,∗, in (2-1) is a second-order approximation to the
solution that satisfies the boundary conditions but does not necessarily satisfy the
incompressibility constraint due to the lagged pressure gradient in (2-2).

2.2. Projection formulation. The projection method [12] is used to enforce incom-
pressibility in discretization (2-1). In general, a smooth vector field, w, on a simply
connected domain, �, can be orthogonally decomposed into a divergence-free
component, wd , and a gradient of a scalar potential, ψ ,

w = wd +∇ψ,

∇ ·wd = 0,

1ψ =∇ ·w
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with boundary conditions wd · n = 0 and ∂ψ/∂n = w · n on ∂�. We can apply a
discrete version of the projection to the discretization (2-1) to obtain a divergence-
free velocity and pressure gradient

U n+1
= P(W ),

∇ pn+1/2
=

1
1t

Q(W ),

W =U n+1,∗
+1t∇ pn−1/2,

where Q = GL−1 D, P = I − Q and L, D and G are discrete representations of
the Laplacian, divergence and gradient, respectively. These projection operations
procedurally reduce to the solution of the Poisson problem and an update of the
velocity and pressure gradient by the gradient of the solution to the Poisson problem

Lφ = D(W ), (2-3)

U n+1
=W − G(φ), (2-4)

∇ pn+1/2
=

1
1t

G(φ). (2-5)

We note that the projection target, W , contains the intermediate velocity augmented
by the lagged pressure gradient resulting in a pressure formulation with improved
stability in comparison to the pressure correction formulation in [49].

The form of G, and thus L, depends on the centering of the projection target, W ,
which is cell-centered in this case. However, the discretization of divergence, based
on the discrete form of the divergence theorem, is applied as a sum of differences
of face-centered data in each direction. In compact notation, we have

D(W )i =
1
h

D∑
d=1

(Wi+êd/2−Wi−êd/2). (2-6)

If we also consider that the gradient is applied to the cell-centered solution to
Poisson’s equation, φi , then D and G are not discrete adjoints and L 6= DG. This
projection is, therefore, approximate and D(P(W ))= O(h2), the same magnitude
as the truncation error. Also, the operator is not idempotent; i.e., P2

6= P .
If the divergence and gradient are discrete adjoints and L ≡ DG, then the projec-

tion is discretely exact, i.e., D(P(W ))= 0; see [12]. This is the case of the so-called
MAC projection, defined to be Pmac

≡ (I − Qmac) and Qmac
≡ Gmac(Lmac)−1 D.

The discrete Laplacian operator can then be defined as the conservative divergence
of the face-centered gradient:

L i ≡ D(Gmac(φ))i =
1
h

D∑
d=1

(Gmac,d(φ)i+êd/2−Gmac,d(φ)i−êd/2). (2-7)
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This is the finite difference discretization of the Laplacian used in the various elliptic
operators throughout the algorithm such as in (2-3).

The cell-centered projection can be constructed by wrapping two averaging
operators around the MAC projection:

P = I − AF→C(Qmac(AC→F )).

First, an operator to average cell-centered velocities to face centers is needed for the
divergence in (2-3). For a face with a normal direction d , the averaging operation is

AC→F (W d)i+êd/2 =
1
2(W

d
i+êd +W d

i ). (2-8)

Then, an averaging operator that is used to average gradients from face centers to
cell centers is defined by

AF→C(Gmac(φ)d)i =
1
2(G

mac,d
i+êd/2(φ)+ Gmac,d

i−êd/2(φ)). (2-9)

The averaging operator, AF→C , effectively results in a centered-difference for the
gradient away from boundaries.

The face-centered gradient, Gmac, of a cell-centered scalar, φi , is defined to be
the finite difference approximation in the normal direction of the face:

Gmac(φ)di+êd/2 =
1
h
(φi+êd −φi ).

For homogeneous Neumann domain boundary conditions, this gradient is 0; for
Dirichlet domain boundary conditions, we use an odd extension of the solution at
the boundary to obtain the gradient.

The transverse gradient at a face is the average of neighboring normal gradients
in transverse directions, d ′, to a d-face:

Gmac(φ)d
′

i+êd/2 =
1

NG

∑
i+êd′/2∈Gd′,d

(
Gmac(φ)d

′

i+êd′/2

)
,

where Gd ′,d is the set of faces in the transverse d ′ direction and NG is the number of
faces in this set. On a regular grid, G is the set of four neighboring adjacent faces in
a d ′ direction. At solid wall domain boundaries, linear extrapolation of transverse
gradients is used to preserve a constant pressure gradient as in Poiseuille flow. For
transverse gradients whose face stencil crosses an orthogonal domain boundary, the
appropriate one-sided difference is taken.

MAC gradients that are preprocessed by the averaging operator, AF→C , in (2-9)
make use of linear extrapolation at boundary faces from interior faces to avoid
over-specification of the problem. For the cell-centered projection target that is
preprocessed by the averaging operator, AC→F , in (2-8), boundary conditions are
applied to the normal component. Referring to the channel boundary conditions
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(1-3)–(1-5), these are W · n = uin at the inlet, W · n = 0 at no-flow solid walls
and a quadratic extrapolation at the outlet that satisfies the Neumann boundary
condition. Projection operator gradients are matched at coarse-fine interfaces by
simple averaging as in [30].

2.3. Hyperbolic discretization. The advection term, (U · ∇)U n+1/2
i, j , in (1-1) is

discretized in conservation form since the flow is incompressible:

∇ · (UU )n+1/2
i, j

=
1
h

(
un+1/2

i+1/2, jU
n+1/2
i+1/2, j − un+1/2

i−1/2, jU
n+1/2
i−1/2, j + v

n+1/2
i, j+1/2U n+1/2

i, j+1/2− v
n+1/2
i, j−1/2U n+1/2

i, j−1/2

)
,

where i and j are the cell-centered grid indices in two dimensions, n is the number
of the timestep and U = (u, v). Here, we consider two dimensions for ease of
exposition — one direction that is normal to the flow (x) and one transverse (y) —
with obvious extension of the transverse discretization to a third dimension (z).

We use an upstream-centered Taylor expansion to extrapolate the cell-centered
velocity to the half step in time and cell edges:

Û n+1/2
i+1/2, j =U n

i, j +
1x
2
∂U n

∂x
+
1t
2
∂U n

∂t
.

Substitution of the PDE for the temporal derivative into the Taylor expansion yields
extrapolated velocities in all directions from the cell center to both sides of a cell
edge (or face in 3D):

Û x,+
i, j =U n

i, j+
1
2 min

[(
1−un

i, j
1t
1x

)
, 1
]
(δN

x U )ni, j−
1t

21y
vn

i, j (δ
T
y U )ni, j+

ν1t
2
1U n

i, j ,

Û x,−
i, j =U n

i, j−
1
2 min

[(
1+un

i, j
1t
1x

)
, 1
]
(δN

x U )ni, j−
1t

21y
vn

i, j (δ
T
y U )ni, j+

ν1t
2
1U n

i, j ,

Û y,+
i, j =U n

i, j+
1
2 min

[(
1−vn

i, j
1t
1y

)
, 1
]
(δN

y U )ni, j−
1t

21x
un

i, j (δ
T
x U )ni, j+

ν1t
2
1U n

i, j ,

Û y,−
i, j =U n

i, j−
1
2 min

[(
1+vn

i, j
1t
1y

)
, 1
]
(δN

y U )ni, j−
1t

21x
un

i, j (δ
T
x U )ni, j+

ν1t
2
1U n

i, j ,

where superscripts x and y refer to the coordinate direction of the extrapolation and
“+” and “−” indicate the direction of the extrapolation from the cell center to the
inside of an edge (inside left/bottom of an edge is the “+” state; inside right/bottom
is the “−” state).

The monotonized second-order normal slopes with van Leer limiting [56; 15] are

(δN
x U )ni, j =

{
(δxU )vL if (U n

i+1, j −U n
i, j )(U

n
i, j −U n

i−1, j ) > 0,
0 if (U n

i+1, j −U n
i, j )(U

n
i, j −U n

i−1, j )≤ 0,
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where

(δxU )vL
= sign(U n

i+1, j −U n
i−1, j )

×min
(
2|U n

i, j −U n
i−1, j |, 2|U n

i+1, j −U n
i, j |,

1
2 |U

n
i+1, j −U n

i−1, j |
)
.

The upwinded transverse slopes are

(δT
y U )ni, j =

{
U n

i, j+1−U n
i, j +

1
2ν1t(1U n

i, j+1−1U n
i, j ) if vn

i, j < 0,

U n
i, j −U n

i, j−1+
1
2ν1t(1U n

i, j −1U n
i, j−1) if vn

i, j ≥ 0,

(δT
x U )ni, j =

{
U n

i+1, j −U n
i, j +

1
2ν1t(1U n

i+1, j −1U n
i, j ) if un

i, j < 0,

U n
i, j −U n

i−1, j +
1
2ν1t(1U n

i, j −1U n
i−1, j ) if un

i, j ≥ 0

with a stability correction due to [35]. All slopes make use of one-sided differences
at domain boundaries; at coarse-fine boundaries, we use linear interpolation and
flux matching [31].

A Riemann problem is then solved to obtain the edge states, U . For example,
x-face states are

U i+1/2, j =


Û x,+

i, j if 1
2(u

n
i, j + un

i+1, j ) > 0,

Û x,−
i+1, j if 1

2(u
n
i, j + un

i+1, j ) < 0,
1
2

(
Û x,+

i, j + Û x,−
i+1, j

)
if 1

2(u
n
i, j + un

i+1, j )= 0.

To make up for the omitted pressure gradient in the velocity extrapolation, the
solution to the Riemann problem is projected onto the space of divergence-free
vectors using a MAC projection

U n+1/2
= Pmac(U )=U −Gmac((DGmac)−1 D(U )). (2-10)

The divergence is calculated as

D(U n+1/2)i, j =
[
(ui+1/2, j − ui−1/2, j )+ (vi, j+1/2− vi, j−1/2)

]/
h.

Both components of velocity have been accounted for up to this point, including
the boundary conditions for the normal component. The transverse component of
velocity at domain boundaries is taken to be the “+” or “−” state on the inside of
the boundary edge in keeping with the idea of an inviscid predictor step.

Our method has a stability constraint on the timestep due to the CFL condition
for the advection terms

1t <
σh

umax , (2-11)
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where σ ≤ 1 and umax is the magnitude of the maximum local wave speed. For adap-
tive calculations, all levels of refinement use the same timestep. We note that subcy-
cling in time is possible; however, it requires the solution to an additional Poisson
equation to enforce the divergence-free constraint with free-stream preservation [31].

3. Finite volume embedded boundary method

In grid cells where the irregular domain intersects the Cartesian grid, finite volume
discretizations must be constructed to obtain conservative discretizations of flux-
based operations defined by finite differences in the previous section. First, the
underlying description of space is given by rectangular control volumes on a
Cartesian gridϒi=[(i− 1

2 V )h, (i+ 1
2 V )h], i ∈ZD , where D is the dimensionality of

the problem, h is the mesh spacing and V is the vector whose entries are all 1. Given
an irregular domain �, we obtain control volumes Vi =ϒi ∩� and faces Ai±êd/2,
which are the intersections of the boundary of ∂Vi with the coordinate planes
{Ex : xd = (id±

1
2)h}. The intersections of the boundary of the irregular domain with

the Cartesian control volume are defined as AB
i = ∂�∩ϒi . For ease of exposition,

it is assumed that there is only one control volume per Cartesian cell. However, the
algorithm described here has been generalized to allow for boundaries whose width
is less than the mesh spacing, i.e., multivalued cells. In regular cells, the finite
volume approximation reduces to the finite difference method described in Section 2.

To construct finite volume methods using this description, several quantities need
to be derived from the geometric objects:

• volume fractions, κi , and area fractions, αi ,

κi =
|Vi |

hD , αi+ês/2 =
|Ai+êd

s /2|

h(D−1) , αB
i =
|AB

i |

hD−1 ,

• centroids of the faces and of AB
i ,

Exi+êd/2 =

[
1

|Ai+êd/2|

∫
Ai+êd/2

Ex d A
]
, Ex B

i =

[
1
|AB

i |

∫
AB

i

Ex d A
]
,

• the average of outward normals of ∂� over AB
i ,

n̂ i =
1
|AB

i |

∫
AB

i

n̂ d A,

where D is the dimension of space and 1≤ d ≤ D. We assume we can compute all
derived quantities to O(h2).

Geometric objects are determined by a hierarchical application of the divergence
theorem to discrete values of implicit function representations of the geometry
on the grid (see [34; 29; 45] for details on embedded boundary grid generation).
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Figure 2. 3D bilinear flux interpolation stencil showing the interpolation point marked by
an “×” for a 3D face in the ê1 direction using face-centered points A, B, C and D.

Coarsened geometries are obtained by coarsening of the graph. The volume of
a coarse cell is exactly the volume of the fine cells that it comprises. This grid
generation machinery is part of the Chombo software libraries.

The conservative approximation of the divergence of a flux EF can now be defined
by applying a discrete form of the divergence theorem

D( EF)v =
1

hκv

( D∑
d=1

(
αi+êd/2 F̃d

i+êd/2−αi−êd/2 F̃d
i−êd/2

)
+αB

v F B
v

)
, (3-1)

where F̃i+êd/2 indicates that the flux has been interpolated to the face centroid using
linear (2D) or bilinear (3D) interpolation of face-centered fluxes. For example, given
the cell edge with outward normal ê1, with centroid Ex , the 2D linearly interpolated
flux in the d direction (d 6= 1) is defined by

F̃d
i+ê1/2 = ηFi+ê1/2+ (1− η)Fi+ê1/2±êd ,

η = 1−
|Ex · êd

|

hd
,

±=

{
+ if Ex · êd > 0,
− if Ex · êd

≤ 0.

(3-2)

The 3D bilinear interpolation of the flux for a face with normal ê1 can be written as

F̃i+ê1/2 = ωFd
i+ê1/2+ (1−ω)F

d
i±êd′+ê1/2

,

ω = 1−
|Ex · êd ′

|

hd ′
,

±=

{
+ if Ex · êd ′ > 0,
− if Ex · êd ′

≤ 0,

(3-3)

where d ′ 6= d and d ′ 6= 1 (see Figure 2).



A FINITE VOLUME METHOD FOR NAVIER–STOKES IN COMPLEX GEOMETRIES 55

3.1. Elliptic operators. The conservative discretization of the divergence theorem
in (3-1) provides a flux-based formula for the discretization of the elliptic operations
in the algorithm. We use the geometric multigrid approach described in [53] to solve
these elliptic systems. In the context of Poisson’s equation, as in the projections (2-3)
and (2-10), the operator is the Laplacian and the flux is simply the gradient of
a scalar, EF = ∇ϕ, with Neumann boundary conditions, F B

= n̂ · ∇ϕ = 0, at
the embedded boundary. However, in the context of Helmholtz, as in (2-1), the
embedded boundary is a no-slip boundary for the velocity, requiring an elliptic
operator with Dirichlet boundary conditions at the embedded boundary. In this
case, the flux at the embedded boundary, F B

= n̂ · ∇ϕ, must be constructed while
maintaining global second-order accuracy.

In [21], the flux at the embedded boundary due to a Dirichlet boundary condition
is constructed by effectively casting a ray from the centroid of the boundary along
the normal into the domain, interpolating ϕ to points along the ray (quadratic in 2D
and biquadratic in 3D), computing the normal gradient of ϕ by differencing the
interpolated points in 1D along the ray and obtaining a τ ≈ O(h2) local truncation
error approximation of n̂ · ∇ϕ. In general, local truncation error on the interior of
a domain is τ ≈ O(h2) and at the boundary τ ≈ O(h/κ). It can be shown that
global solution error is ε = O(h2). For the case of Dirichlet boundary conditions,
the same conclusion holds for τ = O(1) at the boundary owing to the two orders
of magnitude of freedom in the local truncation error resulting from the method
of images (odd extensions) and the homogeneous condition at the boundary. (For
Neumann boundary conditions, the minimum requirement to maintain second-order
global error is τ = O(h).) The conclusion for Dirichlet boundary conditions, shown
in [21] using potential theory, is that it is sufficient to have O(1) boundary conditions
to achieve second-order convergence of solution error for elliptic equations.

In practice, however, we have found that the second-order stencil for Dirichlet
boundary conditions first described in [21] is not stable for lower Reynolds number
flows (much less the Stokes limit) and flows where there exist steep gradients near
the boundary. To fix this instability, we make use of the two orders of magnitude
of freedom in the local truncation error and instead apply a lower-order truncation
error stencil (τ ≈ O(h)) to interpolate the flux at the irregular boundary centroid, B
[50; 52; 51; 47]. The flux, n̂ · ∇ϕ, is obtained by solving a least squares linear
system for ∇ϕ:

A · ∇ϕ = δϕ,

A= (δEx1, δEx2, . . . , δEx p)
T ,

δϕ = (δϕ1, δϕ2, . . . , δϕp)
T ,

δExm = Exm − ExB,

δϕm = ϕm −ϕB .
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Figure 3. Least squares stencil to obtain flux for the Dirichlet boundary condition on the
embedded boundary in 2D (left) and 3D (right) with radius 1.

The stencil of points (m= 1, 2, . . . , p), which excludes the cut cell that contains the
embedded boundary, is determined by the direction of the normal at the boundary.
In 2D, the normal points to a quadrant that includes up, side and corner cells
with p = 3, resulting in two equations and three unknowns in the least squares
system. In 3D, the normal points to an octant with p= 7, resulting in three equations
and seven unknowns. The stencils are shown in Figure 3.

In the case of very complex geometries such as those experienced in porous
media flows where boundaries are very close together and can exhibit cusps and
semidisconnected cavities, this least squares stencil approach based on direction
of the normal can be relaxed to use any points available in a monotone path from
the root cell with a radius greater than 1 but with the same restrictions on p. For
adaptive calculations, we use higher-order (quadratic) interpolation to fill ghost
cells for second-order elliptic operators (Laplacian) at coarse-fine boundaries in
order to avoid O(1) truncation error [30].

We also note that geometric multigrid coarsening can be challenging in very
complex geometries. As an example, for the pressure-Poisson equations (2-3)
and (2-10), the presence of a semidisconnected cavity in the domain can result in
a Neumann problem with nonzero null space. We therefore rely on a combined
embedded boundary-algebraic multigrid (EB-AMG) approach to solve elliptic
equations in very complex geometry cases [48].

3.2. Advective derivative. Since the flow is incompressible, we make use of the
conservative form of the advection term, ∇ · (EuEu), in (3-1) with EF = EuEu. The
problem with this discretization for advection is that the CFL stability constraint on
the timestep is at best1t =O((h/vmax

i )(κi )
1/D), where vmax

i is the magnitude of the
maximum wave speed for the i-th control volume. This is the well-known small-cell
problem for embedded boundary, cut cell methods. There have been a number of
proposals to deal with this problem, including merging the small control volumes
with nearby larger ones [44; 14; 43; 25], the development of specialized stencils
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that guarantee the required cancellations [9; 8; 20; 23] or simply using a threshold
volume below which the cell is considered completely covered, i.e., κ = 0, as in [17].

Our previous approach in [53] was to expand the range of influence of the small
control volumes algebraically to obtain a stable method, akin to [11; 6; 41]. We used
a linear hybridization of conservative and nonconservative estimates of ∇ · (EuEu):

∇ · (EuEu)n+1/2
i = κi (∇ · (EuEu))Ci + (1− κi )(∇ · (EuEu))NC

i .

The small denominator in ∇ · (EuEu) is canceled, and a stable method is obtained.
However, the method fails to conserve mass by an amount measured by the difference
between the hybrid discretization and the conservative one:

δMi = κi
(
(∇ · (EuEu))Ci − (∇ · (EuEu))

NC
i
)
= κi (1− κi )(∇ · (EuEu))Ci − (∇ · (EuEu))

NC
i .

To maintain overall conservation, δMi can be redistributed into nearby cells i ′:

∇ · (EuEu)n+1/2
i ′ := ∇ · (EuEu)n+1/2

i ′ +wi,i ′δMi , i ′ ∈ N (i),

wi,i ′ ≥ 0,
∑

i ′∈N (i)

wi,i ′κi ′ = 1, (3-4)

where N (i) is some set of indices in the neighborhood of i and including i . The
sum condition (3-4) makes the redistribution step conservative. The weights wi,i ′

must be bounded, independent of (κi ′)
−1. We use volume-weighted redistribution,

wi,i ′ =

( ∑
i ′∈N (i)

κi ′

)−1

,

where N (i) is a set of indices, including i , within a radius of influence of 1 and
connected by a monotone path.

The success of this approach depends on the calculation of ∇ · (EuEu)NC because
it is almost entirely responsible for the update of ∇ · (EuEu)i in control volumes
with κi � 1. Specifically, ∇ · (EuEu)NC must be designed so that the solution in small
control volumes comes into equilibrium with the larger control volumes around it.
We now enforce this point by summing the conservative approximation itself in a
domain of influence around the cut cell and normalizing it by the sum of volume
fractions in those cells to obtain the nonconservative approximation:

∇ · (EuEu)NC
i =

∑
i ′∈N (i)

(
κi ′∇ · (EuEu)Ci ′

)
∑

i ′∈N (i)
κi ′

. (3-5)

To compute ∇·(EuEu)C, fluxes EuEu are interpolated to face centroids as in (3-2) or (3-3)
and substituted into (3-1).
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3.3. Volume-weighted scheme. In a new approach, we avoid the small-cell prob-
lem altogether by taking advantage of the structure of our finite volume elliptic
solvers, which take the form κL = κρ, where L is the elliptic operator, ρ is the
right-hand side and κ is the volume fraction of a cut cell. This volume-weighted
form allows us to compute source terms in (2-1) that are also volume-weighted.
We also introduce a conservative form of the cell-centered pressure gradient in the
pressure-correction form of the projection. The overall algorithm is as follows:

(1) Initially a cell-centered velocity is obtained from the projection of the pre-
scribed conditions, U 0

= P(U init), similar to a potential flow solution. The
pressure gradient is constructed to balance the viscous stress from this initial
velocity, ∇ p−1/2

= ν1U 0, to ensure a stable calculation (see Section 4.3 for
details) and then made to be volume-weighted, κ∇ p−1/2.

(2) If the flow is inertial (say, Re > 0.1), then velocities are extrapolated from
cell centers to cell edges as in Section 2.3 and only the conservative volume-
weighted advection term is computed, κ(∇ · (UU )n+1/2). If the Reynolds
number is low (say, Re < 0.1) or approaches the Stokes limit such that
Eu · ∇ Eu� ν1Eu, then this step is unnecessary.

(3) The implicit Helmholtz equation (2-1) is solved in the form of our finite volume
elliptic equation κL = κρ, where the right-hand side has volume-weighted
terms including the source term:

κ
(

I −
ν1t

2
1
)

U n+1,∗

= κ
(

U n
+1t

(ν1t
2
1U n

− (U · ∇)U n+1/2
−∇ pn−1/2

))
. (3-6)

(4) For the approximate projection, a volume-weighted Poisson equation

κ1δ = κD(U n+1,∗) (3-7)

is solved, where δ = pn+1/2
− pn−1/2 indicates pressure correction form.

(5) The volume-weighted cell-centered gradient of the pressure correction, δ, is
computed using a corollary to the divergence theorem for gradients:

κG(δ)= V
∫∫∫

∂δ

∂xi
dV = V

∫∫
δ(êi · n̂i ) d A. (3-8)

The value of the pressure correction at the cell center can be used at the
boundary centroid, or a more elaborate least squares system can be solved for
the boundary value.

(6) The volume-weighted intermediate velocity is corrected with the volume-
weighted gradient of the pressure correction

κU n+1
= κU n+1,∗

− κG(δ). (3-9)



A FINITE VOLUME METHOD FOR NAVIER–STOKES IN COMPLEX GEOMETRIES 59

(7) If the flow is inertial, then the volume-weighting is removed from velocity in
a normalization procedure similar to (3-5) so that the velocity can be used in
the advection step of the next timestep

U n+1
=

∑
i ′∈N (i)

(κi ′U n+1
i ′ )∑

i ′∈N (i)
κi ′

. (3-10)

Here, we note that normalization of the volume-weighted velocity is allowed
because the velocity has already been sufficiently smoothed in the solution to
the viscous Helmholtz equation (3-6). For consistency with step (2), this final
step (7) is not necessary for low Reynolds number or Stokes flow.

4. Results

4.1. Accuracy. To demonstrate the accuracy of the algorithm, we consider incom-
pressible flow inside a sphere. The fluid is initialized as a Gaussian vortex

ω(r)= e−20(4r−0.5)2,

where r is measured from the center of the sphere at x0 to a point x as r2
=

(x−x0)
2
+(y− y0)

2
+(z−z0)

2 in 3D. The initial velocity can then be prescribed by

u(x, t0)= ω(r)((z− z0)− (y− y0))/r,
v(x, t0)= ω(r)((x − x0)− (z− z0))/r,
w(x, t0)= ω(r)((y− y0)− (x − x0))/r.

In 2D, r2
= (x − x0)

2
+ (y− y0)

2 and

u(x, t0)=−ω(r)(y− y0)/r,
v(x, t0)= ω(r)(x − x0)/r.

The Reynolds number for this study is Re= 5 based on vortex strength and diameter.
We estimate the error in the solution using the standard Richardson procedure,

where computations of differing resolutions are evolved to the same time and
compared in a certain norm (see [34] for details). Convergence rates for the 2D
state variables are displayed in Tables 1, 2 and 3 for the L1, L2 and L∞ norms,

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.781614× 10−5 1.981 4.513495× 10−6 1.990 1.135840× 10−6

v 1.788296× 10−5 1.981 4.529397× 10−6 1.991 1.139716× 10−6

∇
x p 1.245135× 10−4 1.998 3.117580× 10−5 1.999 7.798800× 10−6

∇
y p 1.245125× 10−4 1.998 3.117575× 10−5 1.999 7.798797× 10−6

Table 1. 2D solution error convergence rates using the L1-norm for h = 1
2048 .
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Variable e8h→4h Order e4h→2h Order e2h→h

u 2.997859× 10−5 1.977 7.613610× 10−6 1.989 1.918581× 10−6

v 3.011462× 10−5 1.978 7.645604× 10−6 1.989 1.926329× 10−6

∇
x p 2.672975× 10−4 1.997 6.696069× 10−5 1.999 1.675127× 10−5

∇
y p 2.672958× 10−4 1.997 6.696059× 10−5 1.999 1.675127× 10−5

Table 2. 2D solution error convergence rates using the L2-norm for h = 1
2048 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.234211× 10−4 1.980 3.129091× 10−5 1.990 7.878456× 10−6

v 1.237856× 10−4 1.980 3.138271× 10−5 1.990 7.899819× 10−6

∇
x p 1.396595× 10−3 1.995 3.504449× 10−4 1.998 8.771770× 10−5

∇
y p 1.396573× 10−3 1.995 3.504435× 10−4 1.998 8.771761× 10−5

Table 3. 2D solution error convergence rates using the L∞-norm for h = 1
2048 .

respectively. We demonstrate second-order accuracy for all variables in all norms.
A fixed step size of 1t = 0.00025, which is equivalent to a CFL number of σ = 0.5,
is run for 512 steps at the finest resolution of h = 1

2048 . We note that the pressure
gradient resulting from a single application of the projection is first-order (the scalar
pressure is second-order) [16; 49]. To obtain a second-order pressure gradient,
an additional approximate projection is required. The computational cost of this
additional projection is minimized by initialization of the pressure to the value
obtained from the first application of the projection.

We show convergence results in 3D in Tables 4, 5 and 6. At the finest resolution
of h = 1

256 , a fixed step size of 1t = 0.0005, which is equivalent to a CFL number
of σ = 0.5, is run for 64 steps. The convergence rates are second-order for all
variables in all norms except that the velocity components are slightly less than
second-order in the L∞-norm. We attribute this slight degradation in accuracy to
the solution not being fully resolved in the asymptotic regime for convergence.

4.2. Stability of the approximate projection. We demonstrate that the approximate
projection operator is stable, i.e., ‖P‖< 1 (see [26]), by showing that the divergence
of a velocity field diminishes with repeated application of the projection. The

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.071815× 10−3 1.865 2.941499× 10−4 1.948 7.623080× 10−5

v 1.069533× 10−3 1.864 2.937195× 10−4 1.948 7.613267× 10−5

w 1.068955× 10−3 1.865 2.933635× 10−4 1.948 7.603024× 10−5

∇
x p 1.593183× 10−2 1.806 4.556606× 10−3 1.933 1.192892× 10−3

∇
y p 1.592733× 10−2 1.805 4.556155× 10−3 1.933 1.192860× 10−3

∇
z p 1.593025× 10−2 1.806 4.556234× 10−3 1.933 1.192863× 10−3

Table 4. 3D solution error convergence rates using the L1-norm for h = 1
256 .
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Variable e8h→4h Order e4h→2h Order e2h→h

u 2.294986× 10−3 1.846 6.382495× 10−4 1.900 1.709917× 10−4

v 2.288364× 10−3 1.847 6.361839× 10−4 1.900 1.704523× 10−4

w 2.287161× 10−3 1.847 6.357047× 10−4 1.900 1.703239× 10−4

∇
x p 4.846120× 10−2 1.748 1.442698× 10−2 1.922 3.808233× 10−3

∇
y p 4.845033× 10−2 1.748 1.442543× 10−2 1.921 3.808121× 10−3

∇
z p 4.843998× 10−2 1.748 1.442312× 10−2 1.921 3.807923× 10−3

Table 5. 3D solution error convergence rates using the L2-norm for h = 1
256 .

Variable e8h→4h Order e4h→2h Order e2h→h

u 1.891858× 10−2 1.841 5.280958× 10−3 1.781 1.536950× 10−3

v 1.903841× 10−2 1.849 5.285737× 10−3 1.803 1.514318× 10−3

w 1.911926× 10−2 1.846 5.319278× 10−3 1.793 1.534994× 10−3

∇
x p 4.893581× 10−1 1.565 1.653736× 10−1 1.868 4.529462× 10−2

∇
y p 4.880882× 10−1 1.562 1.652861× 10−1 1.868 4.528107× 10−2

∇
z p 4.886462× 10−1 1.564 1.653033× 10−1 1.868 4.528735× 10−2

Table 6. 3D solution error convergence rates using the L∞-norm for h = 1
256 .

velocity field is initialized to a potential flow past an infinitely long cylinder with
radius of 0.1. The cylinder is in the center of a unit square domain. We iteratively
project the velocity field, U , and evaluate the norm of the divergence, κD(U ), and
the norm of the pressure gradient, ∇φ, after each projection. Figures 4 and 5 show
that all norms of both fields monotonically decrease with the number of projection
iterations. Flattening of the curves near the end is due to the residual of the solution
to the Poisson equation by multigrid iterations approaching machine accuracy.

4.3. Stability in the Stokes limit. We use the algorithm to compute a range of
unsteady flows, including low Reynolds number flows where a steady state may

0.0001

0.001

0.01

0.1

1

1 10 100

L∞(κDEu)
L2(κDEu)
L1(κDEu)

1e-08

1e-07

1e-06

1e-05

0.0001

0.001

0.01

1 10 100

L∞(|∇φ|)
L2(|∇φ|)
L1(|∇φ|)

Figure 4. Norms (L∞, L2 and L1) of κDEu (left) and ∇φ (right) versus the number of
projection iterations in the 2D test with h = 1

256 .
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Figure 5. Norms (L∞, L2 and L1) of κDEu (left) and ∇φ (right) versus the number of
projection iterations in the 3D test with h = 1

64 .

exist. In this flow regime, parameters can approach the Stokes limit, Re→ 0,
where Re=Uclc/ν and Uc and lc are characteristic quantities, leading to the Stokes
equations (Navier–Stokes less the advective derivative). However, the Stokes
equations do not capture all the physics of flows even at Re= 0.1, a value that has
traditionally been considered well inside the Stokes limit. We demonstrate this point
by considering flow near a sharp corner as in [36]. Figure 6 shows a comparison
between solving the unsteady Stokes and Navier–Stokes equations to a steady state
in an abrupt expansion channel, both for the same initial data at Re = 0.1. The
magnitude of the velocity and extent of the recirculation zone are noticeably greater
when Eu · ∇ Eu is included in the calculation as seen in the difference in the location
of the innermost contour. Comparison of plots of the velocity along a line through
the recirculation zone shows a 5% difference. The difference between the solutions
is more dramatic as the Reynolds number increases. The criterion for a steady-state
solution is U n+1

−U n < ε1t , where ε = 10−8.
To perform stable computations for low Reynolds number flows (Re< 0.1), we

must construct a well-posed IBVP such that both the momentum and continuity
equations are satisfied by the initial conditions. We obtain a divergence-free potential
flow field that satisfies the no-flow normal boundary conditions by projecting the
velocity: U 0

= P(U init), where U init
= 0 inside the domain. The pressure gradient

is calculated to balance the viscous stress due to the flow field: ∇ p−1/2
= ν1U 0. In

this regime, since viscous effects can dominate inertial forces (ν >Uclc), we define
the viscous timestep to be 1tν = h2/ν. The stability constraint for the algorithm in
the low Reynolds number regime is 1t =min(1tCFL,1tν).

4.4. Scalability and performance. The algorithm described here has been imple-
mented in the Chombo software framework. Chombo provides a set of tools for
implementing finite difference and finite volume methods for the solution of PDEs
on block-structured adaptively refined rectangular grids. Chombo also supports
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Figure 6. Zoomed-in view of the recirculation zone in the corner behind the backward-
facing step for Re = 0.1. Top: solution to the Stokes equation. Middle: solution to the
Navier–Stokes equation. Bottom: plots of velocity along the dotted lines in the top figures.
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Figure 7. Packed cylinder geometries for weak scaling (replication) test in Figure 8.
Left: 1 cm-long cylinder packed with 750 spheres (2048× 2048× 2048) with resolution
h ≈ 2.44µm. This geometry is used for N = 512, 4096, 32768, 261144. Middle: 2 cm-
long cylinder packed with 1500 spheres (2048×1024×1024) with resolution h≈ 4.88µm.
This geometry is used for N = 1024, 8192, 65536. Right: 4 cm-long cylinder packed with
3000 spheres (4096× 1024× 1024) with resolution h ≈ 4.88µm. This geometry is used
for N = 2048, 16384, 131072. The spheres have radii 250µm.

computations in complex geometries with embedded boundaries. Chombo software
libraries enable high-performance computing, data management and I/O for large-
scale simulations.

We demonstrate the scalability and performance of our Chombo-based algorithm
using a weak scaling test for flow through a cylinder packed with spheres (see
Figure 7) as in [48]. In weak scaling, the problem domain is refined by the same
factor as the increase in the number of processor cores (e.g., factor of 2 refinement in
each spatial dimension, D, requires 2D times the number of cores). These tests are
conducted on the NERSC Cray XC30 system, Edison, for up to 131,072 cores and

Figure 8. Weak scaling on the NERSC Cray XC30 (Edison) and OLCF Cray XK7 (Titan,
no GPUs). The horizontal axis is concurrency, N , and the vertical axis is average time in
seconds per timestep.
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Figure 9. Steady-state flow through the packed cylinder geometry in Figure 7 (middle).
Axial velocity is shown with magnified views of the top and bottom of the cross-sectional
slice. Inlet axial velocity is 0.01 cm/sec with Re= 0.5. Computation was performed on
NERSC Cray XC30 Edison using 65,536 processor cores.

on the OLCF Cray XK7 system, Titan, for up to 262,144 CPU cores. We perform
10 timesteps of the algorithm and take the average time per timestep in seconds.
We use a sweet spot for domain decomposition and load balancing of one box per
processor core, where one box is 323 cells. Since a large number of spheres have to
be randomly placed in a cylinder, it is difficult to guarantee a fixed number of spheres
per box. However, the scaling is theoretically very close to replicated data as in [53].
Therefore, we take three different aspect ratios of the cylinder — where each aspect
ratio is a weak scaling test in itself — and combine into one continuous scaling curve
in Figure 8. The three sets of weak scaling data are depicted by shape: a 1-to-1 cylin-
der packed with 750 spheres run on 512, 4096, 32,768 and 262,144 cores (squares), a
2-to-1 cylinder with 1500 spheres run on 1024, 8192 and 65,536 cores (triangles) and
a 4-to-1 cylinder with 3000 spheres run on 2048, 16,384 and 131,072 cores (circles).

On Edison, we observe excellent performance with about 83% efficiency from
512 to 131,072 cores — a relatively flat weak scaling curve — and an average time
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Figure 10. Steady-state flow through the packed cylinder geometry in Figure 7 (middle).
Transverse (z) velocity shown with magnified views of the top and bottom of the cross-
sectional slice. Inlet axial velocity is 0.01 cm/sec with Re = 0.5. Computation was
performed on NERSC Cray XC30 Edison using 65,536 processor cores.

per timestep of 20 seconds at the highest concurrency. On Titan, we observe about
67% efficiency from 512 to 131,072 cores and only 50% up to 262,144 cores. We
note a slight dip at N = 4096, and even slighter at N = 32768, in both curves that
is likely due to a lower percentage of cut cells from refinement of the geometry. We
do observe an upward trend in the weak scaling curve on Titan, particularly at the
two highest concurrencies (it should be flat throughout), but overall the time only
slightly doubles from the lowest concurrency to the highest. We consider the result
on Titan to be good performance for the vast range of concurrencies and given the
flow physics and geometry. Furthermore, performance is in the neighborhood of
1 timestep per minute at the highest concurrency on Titan, which is an acceptable
metric for a large-scale fluid dynamics calculation. We do not make use of the
GPUs on Titan for this scaling test, which may contribute to degraded performance.

4.5. Simulation results. We present simulation results for the 2D and 3D incom-
pressible Navier–Stokes equations for a range of Reynolds numbers in various
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Figure 11. Steady-state flow through the packed cylinder geometry in Figure 7 (right).
From top to bottom, we show the axial (x) and transverse (y) and (z) velocities. Inlet axial
velocity is 0.01 cm/sec with Re= 0.5. Spheres have not been voided in the visualization
unlike in Figures 9 and 10. Computation was performed on OLCF Titan using 131,072
processor cores.
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Figure 12. Steady-state flow through Bedford limestone: embedded boundary grid in gray
with z-velocity data (left) and magnification of the bottom of the disk (right). Resolution
is h = 43 nm with 2048× 2048× 320 total grid cells and 29% porosity. Inlet velocity is
0.0376 cm/sec. Computation was performed on OLCF Titan using 40,960 processor cores.

geometries. Flow problems are set up such that the flow is typically from left to
right in the x direction, the kinematic viscosity is that of water, ν = 0.01 cm2/sec,
and the average velocity at inflow is 1 cm/sec (Poiseuille in 2D and constant in 3D)
unless otherwise stated. For flows where inertial forces have an effect (typically
Re>0.1), the CFL number is σ =0.9. All units are specified in the CGS system. The
maximum grid size resulting from domain decomposition and the AMR hierarchy
is 2562 cells per grid block (box) in 2D and 323 cells per grid block in 3D. The
criterion for steady-state flow is U n+1

−U n < ε1t , where ε = 10−8.

4.5.1. Low Reynolds number flow. We demonstrate the algorithm at the low end of
the Reynolds number flow regime by showing steady-state results for the packed
cylinder used in the scaling study. Using 65,536 processor cores on the NERSC
Cray XC30 Edison, we simulate steady-state flow in the 2-to-1 cylinder packed
with 1500 spheres as in Figure 7 (middle). In Figures 9 and 10, we show the axial
(x) and transverse (z) velocities with magnified views to convey the tortuosity of the
flow and the resolved viscous boundary layer in the pore space. The grid resolution
for this simulation is 2048× 1024× 1024 cells.

To demonstrate hero run capability, we also simulated steady-state flow in the
4-to-1 cylinder geometry packed with 3000 spheres in Figure 7 (right). The steady-
state velocity is shown in Figure 11. This simulation made use of 131,072 processor
cores on OLCF Titan. The Reynolds number is 0.5 for both simulations.

4.5.2. Direct numerical simulation from image data. In addition to synthetic ge-
ometries as in the packed cylinder, we demonstrate direct simulation from microto-
mography image data. Figure 12 shows flow in Bedford limestone with porosity
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Figure 13. Steady-state flow through fractured shale: embedded boundary grid in gray
(top left) with slices at mid-planes of z-velocity (top right), magnifications (middle) and
rotated view of boundary data (bottom left) with slice planes near maximum velocity
location (bottom right). Resolution is h = 48.4 nm with 1920× 1600× 640 total grid cells
and 18% porosity. Inlet velocity is 0.008 cm/sec. Computation was performed on NERSC
Hopper using 60,000 processor cores.

of 29%. In this simulation, resolution of the cross section is critical in order to
capture viscous effects in very tight pore space. The grid resolution of this simulation
is 2048× 2048× 320 cells or h = 43 nm. The image voxel size is 4.4µm.

We also demonstrate the ability to model fully resolved steady-state flow in a
fractured shale in Figure 13. The geometry in this case is obtained from focused
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Figure 14. Flow past a cylinder at Re = 300. Top: 2D simulation of vorticity. Middle:
3D simulation of y vorticity in the x-z plane at z = 4.125. Bottom: 3D simulation of
y vorticity in the x-y plane at y = 4. The cylinder has radius r = 0.0625 and is shown
in white centered at x = 1, y = 4.125 in 2D and x = 1, y = 4, z = 4.125 in 3D. Time
simulated is 98 seconds.
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Figure 15. 2D flow past a cylinder at Re= 300 with extended wake (l = 32). From top to
bottom: vorticity, AMR hierarchy of boxes enclosing the wake and two finest levels. The
cylinder has radius r = 0.0625 and is shown as a black spot near the inlet. Wake extends
approximately 250 cylinder diameters. Time simulated is 112 seconds.

ion beam scanning electron microscopy (FIB-SEM) image data. The pore space is
tighter than the limestone, even though a fracture aperture is present, with a porosity
of 18%. The grid resolution is 1920× 1600× 640 or h = 48 nm. The image voxel
size is 50 nm. In both the synthetic packed cylinder and the image data simulations,
we make use of the EB-AMG method in [48] to solve elliptic problems in these
very complex geometries.

4.5.3. Flow past a cylinder (Re= 300). We perform direct numerical simulation
(DNS) of flow past a cylinder in both 2D and 3D. The diameter of the cylinder
centered at x = 1 is d = 0.125 in a domain that has dimensions l = 16 and w = 8.
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Figure 16. Zoomed-in view of Figure 14 showing AMR hierarchy. Top: 2D vorticity
at left and right sections in the wake with grid block outlines for 4 levels of refinement,
factor of 2. Each block has a maximum of 162 cells (cells not shown). The finest level
(h = 1

512 ) is gridded on 5% of the total domain. Bottom: 3D y vorticity in the x-z plane at
y = 4 at left and right sections in the wake with grid block outlines and cells for 2 levels
of refinement, factor of 2. Each block contains 163 cells in 3D (cells shown for the x-z
plane). The finest level (h = 1

64 ) is gridded on 12% of the total domain.

With Uc = 1, lc = d = 0.125 and ν = 0.0004167, the Reynolds number for this
simulation is Re=300. In Figure 14 (top), we performed a highly resolved four-level
AMR calculation in 2D at Re=300 where the finest level covers only 5% of the total
domain at t=98. The length of wake in this calculation is a very long 120d , which is
shown to be necessary to capture the halfway downstream secondary structures and
far downstream tertiary structures. (We have also simulated an extended domain with
twice the length (l = 32) shown in Figure 15 that depicts additional wake structures
but with no comparison to 3D.) A recirculation zone persists within the secondary
wake structure along the centerline between the vortices above and below. We
simulate a domain width of 64d and use slip wall boundary conditions at boundaries
transverse to the x direction of the flow to minimize the interaction of domain
boundary effects with the wake. The additional mesh refinement tracks dynamically
with the magnitude of vorticity in time using a refinement threshold of 2.0. Grid
blocks are outlined (cells not shown) for this five-level calculation in Figure 16 (top).
Each grid block contains a maximum of 162 cells for a given level of refinement.
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Figure 17. 3D isocontour (ωz = 0.001) of z vorticity for flow past a cylinder at Re= 300
and t = 98 seconds. The isocontour is contained by the finest level of grid blocks.

We performed a simulation in 3D for comparison to 2D using the same parameters
but with only two additional AMR levels. Williamson notes a transition Reynolds
number regime up to 300, beyond which velocity fluctuations become irregular
and vortex formation is three-dimensional [57; 58; 59]. In the 3D simulation, a
number of transient structures develop in the fluid that organize at very long time
into a persistent train of vortices (see Figure 14, middle and bottom), which is only
similar to the near wake in 2D (see Figure 14, top). The third dimension has a
self-organizing effect on the wake structures as previously noted [22; 61]. The flow
in the wake is clearly not two-dimensional as seen in the bowing of the peaks and
valleys and narrowing of the length of the rows. This point is further emphasized in
the isocontour plot of z vorticity in Figure 17. We also show the grid blocks with
cells for this two-level calculation in Figure 16 (bottom). The finest level is gridded
on 12% of the domain at t = 98. Each grid block contains a maximum of 163 cells
for a given level of refinement.

4.5.4. Flow past a sphere (Re= 600). We perform DNS of 3D flow past a sphere.
The diameter of the sphere, centered at x = 1, is d = 0.125 in a domain that has
dimensions l = 16 and w= 8. With Uc = 2, lc = d = 0.125 and ν = 0.0004167, the
Reynolds number for this simulation is Re= 600. In Figure 18, we show a resolved
three-level AMR calculation where the finest level covers less than 1% of the total
domain. (The domain is very large in order to minimize boundary interactions
with the wake.) The base grid is 512× 256× 256 with two additional levels of
refinement, factor of 4. The maximum grid box size in the AMR hierarchy is 323.
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Figure 18. Flow past a sphere, Re= 600. Top: velocity in the x direction shown in 3D
with AMR grids. Middle: velocity in the x direction in the x-y plane with grids. Bottom:
velocity in the y direction and pressure in the x-y plane. The base grid is 512× 256× 256
with 2 additional levels of refinement, factor of 4. The domain is 16 cm long and 8 cm
wide by 8 cm wide. Sphere diameter is 0.125 cm. Inlet velocity is 2 cm/sec. Simulated
time is 2 seconds and early in wake formation with no vortex shedding. The simulation
was performed on 8192 nodes, 1 rank per node on ALCF BGQ Mira.

The 3D plots at the top of Figure 18 depict a notched wake in the velocity field but
no oscillations at t = 2 seconds. We show outlines of the grid boxes to indicate
refinement only around the sphere and the wake and not away from the interesting
part of the flow. The second row of plots shows the same in a 2D slice. At the
bottom of the figure, we show a transverse component of velocity as well as the
pressure. Figure 19 depicts a wake that has begun to oscillate at t = 2.5 seconds.

4.5.5. High Reynolds number flow in a contraction (Re= 6300). We show results
for another example of the effectiveness of AMR when combined with the embedded
boundary method by demonstrating DNS of flow in a sudden contraction. This
example is intended to model flow of oil upward in a long (over 4 km) pipe buried
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Figure 19. Flow past a sphere, Re= 600. Top: vorticity in the z direction and with AMR
grids. Middle: velocity in the x direction and pressure. Bottom: velocity in the y direction
and velocity in the z direction. The base grid is 512× 256× 256 with 2 additional levels
of refinement, factor of 4. The domain is 16 cm long and 8 cm by 8 cm in cross section.
Sphere diameter is 0.125 cm. Inlet velocity is 2 cm/sec. Simulated time is 2.5 seconds and
early in wake formation, but vortices have begun to shed. All plots are shown in x-y plane.
The simulation was performed on 8192 nodes, 1 rank per node on ALCF BGQ Mira.

in the sea bed that undergoes essentially a contraction at the sea floor near a blowout
preventer (as in the Deepwater Horizon Macondo well [33; 39]). In such a scenario,
it is critical to solve for the bulk flow characteristics like pressure drop and flow
rate over the entire length of the pipe in order to assess the likelihood of success for
intervention strategies. However, it is equally critical to resolve the microscopic,
by comparison, boundary layer effects near the blowout preventer in order to be
able to determine failure points. Here, we focus on Newtonian flow in a 1 m-
length section of the pipe near a 4-to-1 contraction in two dimensions of Cartesian
coordinates for demonstration purposes only. The base grid contains 2048× 1024
cells (0.488 mm resolution) with 32 boxes of 2562 cells. Three additional levels of
refinement (factor of 4) are added dynamically for an effective resolution of 7.6µm
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Figure 20. Turbulent flow in 2D contraction, Re≈ 6300. Top left: conceptual model for
oil flow entering a hypothetical failed blowout preventer depicted as a wellbore contracted
into a (stuck) drill pipe. Top middle: axial fluid velocity in 100 cm-long by 50 cm-wide
section of contraction. Top right: pressure. Middle left: increased magnification of
velocity near the contraction corner with finer levels of AMR boxes (center). Middle right:
increased magnification of pressure. Bottom left: increased magnification of velocity
with finer levels of AMR boxes and mesh (bottom middle). Bottom right: increased
magnification of pressure. Velocity range is −65.52 cm/sec (blue) to 84.66 cm/sec (red).
Inlet average velocity is 10 cm/sec. Pressure range is −6662 bar (blue) to 3398 bar (red).
The base grid is 2048× 1024 with 3 additional levels of refinement, factor of 4. Time is
t = 0.125 sec. Computations were performed on 8192 cores at NERSC.
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near the contraction. The finest AMR level contains 8975 boxes and covers less
than 3% of the domain. The Reynolds number is approximately 6300. Figure 20
depicts transient turbulent flow in the contraction at t = 0.125 seconds. We show
both velocity and pressure with extreme gradients near and just downstream of
the contraction. We show increased magnification in the lower figures with box
boundaries and, in the bottom row, mesh resolution.

5. Conclusions

We present a conservative, second-order accurate method to solve the incompressible
Navier–Stokes equations in complex geometries. The method is based on a finite
volume, embedded boundary approach that makes use of the discrete form of
the divergence theorem to discretize the solution in irregular control volumes
resulting from the intersection of solid boundaries with a regular, Cartesian grid.
The method reduces to a standard finite difference approach in regular cells away
from the boundary. We introduce several novel ideas including a volume-weighted
scheme that avoids the small-cell problem associated with cut cell methods and
a conservative cell-centered gradient for approximate projections. We have cou-
pled the embedded boundary method with AMR to provide a high-performance,
high-resolution simulation tool for modeling multiscale, multiphysics problems
in complex geometries. The algorithm scales to 262,144 processor cores and is
amenable to direct simulation from image data. The cut cell algorithm described
here is the basis for a high-performance production code that models 3D engineering
scale problems involving incompressible viscous flow and transport in complex
geometries. We demonstrate the robustness of the algorithm for a wide range of
Reynolds numbers and flow geometries — from creeping flow in realistic pore space
to transitional flows past bluff bodies to turbulent pipe flow.

We model moderate Reynolds number phenomena for flow past a cylinder at a
fidelity that has not yet been achieved. Typically, only the near wake of the cylinder
is modeled numerically as in [22; 61]. In 2D, we observe secondary, tertiary and
even quaternary structures far downstream of the near wake at a scale that is much
broader than previously modeled, up to 250 cylinder diameters downstream in the
wake. By comparison, in 3D, we observe a very long and persistent single train of
vortices with coherent structures in the cross-channel direction for the same length
wake as in the 2D case. Similarly, we have also demonstrated high resolution of
turbulent flow past a sphere in the early stages of wake formation. This capability
could prove to be very effective in an investigation of both near and far wake
dynamics in high Reynolds number flows past bluff bodies.

We have shown that the method is also suitable for direct numerical simulation of
high Reynolds number internal flows. The adaptive capability captures small-scale,
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microscopic features in the viscous boundary layer near a singular geometric feature
such as a contraction while also resolving bulk flow properties in a domain that
is 6 orders of magnitude larger than the finest spatial resolution of the boundary
layer. This demonstration was motivated by a large-scale engineering model for
worst-case discharge and failure point analysis of the Deepwater Horizon Macondo
oil well blowout in 2010.

With demonstrated capability to perform direct simulation from image data,
the algorithm has served as the basis for low Reynolds number reactive transport
simulations in realistic pore space [37; 38] and is proving to be a useful tool for
modeling flow in fractured subsurface materials. The algorithm is also amenable to
methods for tracking fluid-fluid and fluid-solid interfaces [34], providing a consistent
approach to modeling multiphase flow and time-dependent boundary problems.
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