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ABSTRACT
The slowing pace of commodity microprocessor performance
improvements combined with ever-increasing chip power de-
mands has become of utmost concern to computational sci-
entists. As a result, the high performance computing com-
munity is examining alternative architectures that address
the limitations of modern cache-based designs. In this work,
we examine the potential of using the forthcoming STI Cell
processor as a building block for future high-end comput-
ing systems. Our work contains several novel contributions.
First, we introduce a performance model for Cell and apply
it to several key scientific computing kernels: dense ma-
trix multiply, sparse matrix vector multiply, stencil com-
putations, and 1D/2D FFTs. The difficulty of program-
ming Cell, which requires assembly level intrinsics for the
best performance, makes this model useful as an initial step
in algorithm design and evaluation. Next, we validate the
accuracy of our model by comparing results against pub-
lished hardware results, as well as our own implementations
on the Cell full system simulator. Additionally, we com-
pare Cell performance to benchmarks run on leading super-
scalar (AMD Opteron), VLIW (Intel Itanium2), and vector
(Cray X1E) architectures. Our work also explores several
different mappings of the kernels and demonstrates a simple
and effective programming model for Cell’s unique architec-
ture. Finally, we propose modest microarchitectural mod-
ifications that could significantly increase the efficiency of
double-precision calculations. Overall results demonstrate
the tremendous potential of the Cell architecture for scien-
tific computations in terms of both raw performance and
power efficiency.

Categories and Subject Descriptors
C.1.2 [Processor Architectures] : Multiple Data Stream Ar-
chitectures — Single-instruction- stream, multiple-data-stream
processors (SIMD)
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C.1.3 [Processor Architectures] : Other Architecture Styles
— Heterogeneous (hybrid) systems
C.1.4 [Processor Architectures] : Parallel Architectures
C.4 [Performance of Systems] : Design studies, modeling
techniques, performance attributes
D.1.3 [Programming Techniques] : Concurrent Program-
ming — Parallel Programming

General Terms
Performance, Design

Keywords
Cell processor, GEMM, SpMV, sparse matrix, FFT, Stencil,
three level memory

1. INTRODUCTION
Over the last decade the HPC community has moved to-

wards machines composed of commodity microprocessors as
a strategy for tracking the tremendous growth in processor
performance in that market. As frequency scaling slows,
and the power requirements of these mainstream processors
continues to grow, the HPC community is looking for alter-
native architectures that provide high performance on sci-
entific applications, yet have a healthy market outside the
scientific community. In this work, we examine the potential
of the forthcoming STI Cell processor as a building block for
future high-end computing systems, by investigating perfor-
mance across several key scientific computing kernels: dense
matrix multiply, sparse matrix vector multiply, stencil com-
putations on regular grids, as well as 1D and 2D FFTs.

Cell combines the considerable floating point resources re-
quired for demanding numerical algorithms with a power-
efficient software-controlled memory hierarchy. Despite its
radical departure from previous mainstream/commodity pro-
cessor designs, Cell is particularly compelling because it
will be produced at such high volumes that it will be cost-
competitive with commodity CPUs. The current implemen-
tation of Cell is most often noted for its extremely high per-
formance single-precision (SP) arithmetic, which is widely
considered insufficient for the majority of scientific applica-
tions. Although Cell’s peak double precision performance
is still impressive relative to its commodity peers (˜14.6
Gflop/s@3.2GHz), we explore how modest hardware changes
could significantly improve performance for computationally
intensive DP applications.



This paper presents several novel results. We present
quantitative performance data for scientific kernels that com-
pares Cell performance to leading superscalar (AMD Opteron),
VLIW (Intel Itanium2), and vector (Cray X1E) architec-
tures. We believe this study examines the broadest array
of scientific algorithms to date on Cell. We developed both
analytical models and lightweight simulators to predict ker-
nel performance that we demonstrated to be accurate when
compared against published Cell hardware result, as well as
our own implementations on the Cell full system simulator.
Our work also explores the complexity of mapping several
important scientific algorithms onto the Cell’s unique archi-
tecture in order to leverage the large number of available
functional units and the software-controlled memory. Ad-
ditionally, we propose modest microarchitectural modifica-
tions that could increase the efficiency of double-precision
arithmetic calculations, and demonstrate significant perfor-
mance improvements compared with the current Cell imple-
mentation.

Overall results demonstrate the tremendous potential of
the Cell architecture for scientific computations in terms of
both raw performance and power efficiency. We also con-
clude that Cell’s heterogeneous multi-core implementation
is inherently better suited to the HPC environment than
homogeneous commodity multicore processors.

2. RELATED WORK
One of the key limiting factors for computational per-

formance is off-chip memory bandwidth. Since increasing
the off-chip bandwidth is prohibitively expensive, many ar-
chitects are considering ways of using available bandwidth
more efficiently. Examples include hardware multithreading
or more efficient alternatives to conventional cache-based ar-
chitectures such as software-controlled memories. Software-
controlled memories can potentially improve memory sub-
system performance by supporting finely controlled prefetch-
ing and more efficient cache-utilization policies that take ad-
vantage of application-level information — but do so with far
less architectural complexity than conventional cache archi-
tectures. While placing data movement under explicit soft-
ware control increases the complexity of the programming
model, prior research has demonstrated that this approach
can be more effective for hiding memory latencies (including
cache misses and TLB misses) — requiring far smaller cache
sizes to match the performance of conventional cache imple-
mentations [17,19]. The performance of software-controlled
memory is more predictable, thereby making it popular for
real-time embedded applications where guaranteed response
rates are essential.

Over the last five years, a plethora of alternatives to con-
ventional cache-based architectures have been suggested in-
cluding scratchpad memories [9,16,30], paged on-chip mem-
ories [12, 17], and explicit three-level memory architectures
[18, 19]. Until recently, few of these architectural concepts
made it into mainstream processor designs, but the increas-
ingly stringent power/performance requirements for embed-
ded systems have resulted in a number of recent implemen-
tations that have adopted these concepts. Chips like the
Sony Emotion Engine [20,23,29] and Intel’s MXP5800 both
achieved high performance at low power by adopting three
levels (registers, local memory, external DRAM) of software-
managed memory. More recently, the STI Cell processor has
adopted a similar approach where data movement between
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Figure 1: Overview of the Cell processor

these three address spaces is explicitly controlled by the ap-
plication. For predictable data access patterns the local
store approach is highly advantageous as it can be very effi-
ciently utilized through explicit software-controlled schedul-
ing. Improved bandwidth utilization through deep pipelin-
ing of memory requests requires less power, and has a faster
access time, than a large cache due in part to its lower com-
plexity. If however, the data access pattern lacks predictabil-
ity, then the advantages of software-managed memory are
lost. This more aggressive approach to memory architec-
ture was adopted to meet the demanding cost/performance
and real-time responsiveness requirements of Sony’s upcom-
ing video game console. However, to date, an in-depth study
to evaluate the potential of utilizing the Cell architecture in
the context of scientific computations does not appear in the
literature.

3. CELL BACKGROUND
Cell [8,27] was designed by a partnership of Sony, Toshiba,

and IBM (STI) to be the heart of Sony’s forthcoming PlaySta-
tion3 gaming system. Cell takes a radical departure from
conventional multiprocessor or multi-core architectures. In-
stead of using identical cooperating commodity processors,
it uses a conventional high performance PowerPC core that
controls eight simple SIMD cores, called synergistic process-
ing elements (SPEs), where each SPE contains a synergistic
processing unit (SPU), a local memory, and a memory flow
controller. An overview of Cell is provided in Figure 1.

Access to external memory is handled via a 25.6GB/s
XDR memory controller. The cache coherent PowerPC core,
the eight SPEs, the DRAM controller, and I/O controllers
are all connected via 4 data rings, collectively known as the
EIB. The ring interface within each unit allows 8 bytes/cycle
to be read or written. Simultaneous transfers on the same
ring are possible. All transfers are orchestrated by the Pow-
erPC core.

Each SPE includes four single precision (SP) 6-cycle pipe-
lined FMA datapaths and one double precision (DP) half-
pumped (the double precision operations within a SIMD
operation must be serialized) 9-cycle pipelined FMA datap-
ath with 4 cycles of overhead for data movement [22]. Cell
has a 7 cycle in-order execution pipeline and forwarding net-
work [8]. IBM appears to have solved the problem of insert-
ing a 13 (9+4) cycle DP pipeline into a 7 stage in-order ma-
chine by choosing the minimum effort/performance/power
solution of simply stalling for 6 cycles after issuing a DP



instruction. The SPE’s DP throughput [14] of one DP in-
struction every 7 (1 issue + 6 stall) cycles coincides perfectly
with this reasoning.

Thus for computationally intense algorithms like dense
matrix multiply (GEMM), we expect SP implementations to
run near peak whereas DP versions would drop to approxi-
mately one fourteenth the peak SP flop rate [10]. Similarly,
for bandwidth intensive applications such as sparse matrix
vector multiplication (SpMV) we expect SP versions to be
between 1.5x and 4x as fast as DP, depending on density
and uniformity.

Unlike a typical coprocessor, each SPE has its own local
memory from which it fetches code and reads and writes
data. All loads and stores issued from the SPE can only
access the SPE’s local memory. The Cell processor depends
on explicit DMA operations to move data from main mem-
ory to the local store of the SPE. The limited scope of loads
and stores allows one to view the SPE as having a two-level
register file. The first level is a 128 x 128b single cycle reg-
ister file, where the second is a 16K x 128b six cycle register
file. Data must be moved into the first level before it can be
operated on by instructions. Dedicated DMA engines allow
multiple concurrent DMA loads to run concurrently with the
SIMD execution unit, thereby mitigating memory latency
overhead via double-buffered DMA loads and stores. The
selectable length DMA operations supported by the SPE
are much like a traditional unit stride vector load. We ex-
ploit these similarities to existing HPC platforms to select
programming models that are both familiar and tractable
for scientific application developers.

4. PROGRAMMING MODELS
The Cell architecture poses several challenges to program-

ming: an explicitly controlled memory hierarchy, explicit
parallelism between the 8 SPEs and the PowerPC, and a
quadword based ISA. Our goal is to select the programming
paradigm that offers the simplest possible expression of an
algorithm while being capable of fully utilizing the hardware
resources of the Cell processor.

The memory hierarchy is programmed using explicit DMA
intrinsics with the option of user programmed double buffer-
ing to overlap data movement with computation on the
SPEs. Moving from a hardware managed memory hierarchy
to one controlled explicitly by the application significantly
complicates the programming model, and pushes it towards
a one sided communication model. Unlike MPI, the intrin-
sics are very low level and map to half a dozen instructions.
This allows for very low software overhead and good perfor-
mance, but requires the user to be capable and either ensure
correct usage or provide an interface or abstraction.

For programming the parallelism on Cell, we considered
three possible programming models: task parallelism with
independent tasks scheduled on each SPE; pipelined paral-
lelism where large data blocks are passed from one SPE to
the next; and data parallelism, where the processors perform
identical computations on distinct data. For simplicity, we
do not consider parallelism between the PowerPC and the
SPEs, so we can treat this as a homogeneous parallel ma-
chine. Data pipelining may be suitable for certain classes
of algorithms and will be the focus of future investigation.
We adopt the data-parallel programming model, which is a
good match to many scientific applications and offers the
simplest and most direct method of decomposing the prob-

lem. Data-parallel programming is quite similar to loop-
level parallelization afforded by OpenMP or the vector-like
multistreaming on the Cray X1E and the Hitachi SR-8000.

The focus of this paper is Cell architecture and perfor-
mance; we do not explore the efficacy of the IBM SPE XLC
compiler. Thus, we heavily rely on SIMD intrinsics and do
not investigate if appropriate SIMD instructions are gener-
ated by the compiler. Although the produced Cell code may
appear verbose — due to the use of intrinsics instead of C
operators — it delivers readily understandable performance.

Our first Cell implementation, SpMV, required about a
month of learning the programming model, the architecture,
the compiler, the tools, and deciding on a final algorithmic
strategy. The final implementation required about 600 lines
of code. The next code development examined two flavors
of double precision stencil-based algorithms. These imple-
mentations required one week of work and are each about
250 lines, with an additional 200 lines of common code. The
programming overhead of these kernels on Cell required sig-
nificantly more effort than the scalar version’s 15 lines, due
mainly to loop unrolling and intrinsics use. Although the
stencils are a simpler kernel, the SpMV learning experience
accelerated the coding process.

Having become experienced Cell programmers, the single
precision time skewed stencil — although virtually a com-
plete rewrite from the double precision single step version
— required only a single day to code, debug, benchmark,
and attain spectacular results of over 65 Gflop/s. This im-
plementation consists of about 450 lines, due once again to
unrolling and the heavy use of intrinsics.

5. SIMULATION METHODOLOGY
The simplicity of the SPEs and the deterministic behav-

ior of the explicitly controlled memory hierarchy make Cell
amenable to performance prediction using a simple analytic
model. Using this approach, one can easily explore multiple
variations of an algorithm without the effort of programming
each variation and running on either a fully cycle-accurate
simulator or hardware. With the newly released cycle accu-
rate simulator (Mambo), we have succesfully validated our
performance model for SGEMM, SpMV, and Stencil Com-
putations, as will be shown in the subsequent sections.

Our modeling approach is broken into two steps commen-
surate with the two phase double buffered computational
model. The kernels were first segmented into code-snippets
that operate only on data present in the local store of the
SPE. We sketched the code snippets in SPE assembly and
performed static timing analysis. The latency of each opera-
tion, issue width limitations, and the operand alignment re-
quirements of the SIMD/quadword SPE execution pipeline
determined the number of cycles required. The in-order na-
ture and fixed local store memory latency of the SPEs makes
the analysis deterministic and thus more tractable than on
cache-based, out-of-order microprocessors.

In the second step, we construct a model that tabulates
the time required for DMA loads and stores of the operands
required by the code snippets. The model accurately re-
flects the constraints imposed by resource conflicts in the
memory subsystem. For instance, concurrent DMAs issued
by multiple SPEs must be serialized, as there is only a single
DRAM controller. The model also presumes a conservative
fixed DMA initiation latency of 1000 cycles.

The model computes the total time by adding all the per-



Cell X1E AMD64 IA64
SPE Chip (MSP)

SIMD Multi- Multi Super VLIW
Architecture core chip scalar

SIMD Vector
Clock (GHz) 3.2 3.2 1.13 2.2 1.4
DRAM (GB/s) 25.6 25.6 34 6.4 6.4
SP Gflop/s 25.6 204.8 36 8.8 5.6
DP Gflop/s 1.83 14.63 18 4.4 5.6
Local Store 256KB 2MB — — —
L2 Cache — 512KB 2MB 1MB 256KB
L3 Cache — — — — 3MB
Power (W) 3 ˜40 120 89 130
Year — 2006 2005 2004 2003

Table 1: Architectural overview of STI Cell, Cray
X1E MSP, AMD Opteron, and Intel Itanium2. Es-
timated total Cell power and peak Gflop/s are
based on the active SPEs/idle PowerPC program-
ming model.

iteration (outer loop) times, which are themselves computed
by taking the maximum of the snippet and DMA transfer
times. In some cases, the per-iteration times are constant
across iterations, but in others it varies between iterations
and is input-dependent. For example, in a sparse matrix, the
memory access pattern depends on the nonzero structure of
the matrix, which varies across iterations. Some algorithms
may also require separate stages which have different execu-
tion times; e.g., the FFT has stages for loading data, loading
constants, local computation, transpose, local computation,
bit reversal, and storing the results.

For simplicity we chose to model a 3.2GHz, 8 SPE version
of Cell with 25.6GB/s of memory bandwidth. This version
of Cell is likely to be used in the first release of the Sony
PlayStation3 [28]. The lower frequency had the simplifying
benefit that both the EIB and DRAM controller could de-
liver two SP words per cycle. The maximum flop rate of
such a machine would be 204.8 Gflop/s, with a computa-
tional intensity of 32 FLOPs/word. For comparison, we ran
these kernels on actual hardware of several leading proces-
sor designs: the vector Cray X1E MSP, superscalar AMD
Opteron 248 and VLIW Intel Itanium2. The key architec-
tural characteristics are detailed in Table 1.

5.1 Cell+ Architectural Exploration
The Double Precision (DP) pipeline in Cell is obviously

an afterthought as video games have limited need for DP
arithmetic. Certainly a redesigned pipeline would rectify
the performance limitations, but would do so at a cost of
additional design complexity and power consumption. We
offer a more modest alternative that can reuse most of the
existing circuitry. Based on our experience designing the VI-
RAM vector processor-in-memory chip [12], we believe these
“Cell+” design modifications are considerably less complex
than a redesigned pipeline, consume very little additional
surface area on the chip, but show significant DP perfor-
mance improvements for scientific kernels.

In order to explore the limitations of Cell’s DP issue band-
width, we propose an alternate design with a longer forward-
ing network to eliminate the all but one of the stall cycles

— recall the factors that limit DP throughput as described
in Section 3. In this hypothetical implementation, called
Cell+, each SPE would still have the single DP datapath,
but would be able to dispatch one DP SIMD instruction
every other cycle instead of one every 7 cycles. The Cell+
design would not stall issuing other instructions and would
achieve 3.5x the DP throughput of the Cell (51.2 Gflop/s) by
fully utilizing the existing DP datapath; however, it would
maintain the same SP throughput, frequency, bandwidth,
and power as the Cell.

6. DENSE MATRIX-MATRIX MULTIPLY
We begin by examining the performance of dense matrix-

matrix multiplication, or GEMM. This kernel is character-
ized by high computational intensity and regular memory
access patterns, making it an extremely well suited for the
Cell architecture. We explored two storage formats: column
major and block data layout [26] (BDL). BDL is a two-
stage addressing scheme (block row/column, element sub
row/column).

6.1 Algorithm Considerations
For GEMM, we adopt what is in essence an outer loop

parallelization approach. Each matrix is broken into 8n x
n element tiles designed to fit into the memory available on
the Cell chip, which are in turn split into eight n x n element
tiles that can fit into the 8 SPE local stores. For the column
layout, the matrix will be accessed via a number of short
DMAs equal to the dimension of the tile — e.g. 64 DMAs
of length 64. BDL, on the other hand, will require a single
long DMA of length 16KB.

Since the local store is only 256KB, and must contain
both the program and stack, program data in the local
store is limited to about 56K words. The tiles, when dou-
ble buffered, require 6n2 words of local store (one from each
matrix) — thus making 962 the maximum square tiles in
SP. Additionally, in column layout, there is added pressure
on the maximum tile size for large matrices, as each column
within a tile will be on a different page resulting in TLB
misses. The minimum size of a tile is determined by the
FLOPs to word ratio of the processor. In the middle, there
is a tile-size ”sweet spot” that delivers peak performance.

The loop order was therefore chosen to minimize the aver-
age number of pages touched per phase for a column major
storage format. The BDL approach, as TLB misses are of
little concern, allows us to structure the loop order to min-
imize memory bandwidth requirements.

A possible alternate approach is to adapt Cannon’s algo-
rithm [3] for parallel machines. Although this strategy could
reduce the DRAM bandwidth requirements by transferring
blocks via the EIB, for a column major layout, it could sig-
nificantly increase the number of pages touched. This will
be the subject of future work. Note that for small matrix
sizes, it is most likely advantageous to choose an algorithm
that minimizes the number of DMAs. One such solution
would be to broadcast a copy of the first matrix to all SPEs.

6.2 Single Precision GEMM Results
The Cell performance of GEMM based on our perfor-

mance model (referred to as Cellpm) for large matrices is
presented in Table 2. SGEMM simulation data show that
322 blocks do not achieve sufficient computational inten-
sity to fully utilize the processor. The choice of loop order



Cellpm
+ Cellpm X1E AMD64 IA64

DP (Gflop/s) 51.1 14.6 16.9 4.0 5.4
SP (Gflop/s) — 204.7 29.5 7.8 3.0

Table 2: GEMM performance (in Gflop/s) for large
square matrices on Cell, X1E, Opteron, and Ita-
nium2. Only the best performing numbers are
shown. Cell data based on our performance model
is referred to as Cellpm.

and the resulting increase in memory traffic prevents column
major 642 blocks from achieving a large fraction of peak
(over 90%) for large matrices. Only 962 block sizes provide
enough computational intensity to overcome the additional
block loads and stores, and thus achieving near-peak perfor-
mance — over 200Gflop/s. For BDL, however, 642 blocks
effectively achieve peak performance. Whereas we assume a
1000 cycle DMA startup latency in our simulations, if the
DMA latency were only 100 cycles, then the 642 column
major performance would reach parity with BDL.

At 3.2GHz, each SPE requires about 3W [8]. Thus with
a nearly idle PPC and L2, Cellpmachieves over 200 Gflop/s
for approximately 40W of power — nearly 5 Gflop/s/Watt.
Clearly, for well-suited applications, Cell is extremely power
efficient.

6.3 Double Precision GEMM Results
A similar set of strategies and simulations were performed

for DGEMM. Although the time to load a DP 642 block is
twice that of the SP version, the time required to compute
on a 642 DP block is about 14x as long as the SP counterpart
(due to the limitations of the DP issue logic). Thus it is far
easier for DP to reach its peak performance. — a mere 14.6
Gflop/s. However, when using our proposed Cell+ hardware
variant, DGEMM performance jumps to an impressive 51
Gflop/s.

6.4 Performance Comparison
Table 2 shows a performance comparison of GEMM be-

tween Cellpmand the set of modern processors evaluated in
our study. Note the impressive performance characteristics
of the Cell processors, achieving 69x, 26x, and 7x speed
up for SGEMM compared with the Itanium2, Opteron, and
X1E respectively. For DGEMM, the default Cell processor
is 2.7x and 3.7x faster than the Itanium2 and Opteron. In
terms of power, the Cell performance is even more impres-
sive, achieving over 200x the efficiency of the Itanium2 for
SGEMM!

Our Cellpm
+ exploration architecture is capable, for large

tiles, of fully exploiting the DP pipeline and achieving over
50 Gflop/s. In DP, the Cell+ architecture would be nearly
10 times faster than the Itanium2 and nearly 30 times more
power efficient. Additionally, traditional micros (Itanium2,
Opteron, etc) in multi-core configurations would require ei-
ther enormous power saving innovations or dramatic reduc-
tions in performance, and thus would show even poorer per-
formance/power compared with the Cell technology. Com-
pared to the X1E, Cell+ would be 3 times as fast and 9
times more power efficient.

The decoupling of main memory data access from the
computational kernel guarantees constant memory access
latency since there will be no cache misses, and all TLB ac-

cesses are resolved in the communication phase. Matrix mul-
tiplication is perhaps the best benchmark to demonstrate
Cell’s computational capabilities, as it achieves high perfor-
mance by buffering large blocks on chip before computing
on them.

6.5 Model Validation
IBM recently released their in-house performance evalu-

ation of their prototype hardware [4]. On SGEMM, they
achieve about 201 Gflop/s, which is within 2% of our pred-
icated performance.

7. SPARSE MATRIX VECTOR MULTIPLY
At first glance, SpMV would seem to be a poor applica-

tion choice for the Cell since the SPEs have neither caches
nor word-granularity gather/scatter support. Furthermore,
SpMV has a relatively low O(1) computational intensity.
However, these considerations are perhaps less important
than the Cell’s low functional unit and local store latency
(<2ns), the task parallelism afforded by the SPEs, the eight
independent load store units, and the ability to stream nonze-
ros via DMAs.

7.1 Algorithmic Considerations
Two storage formats are presented in this paper: Com-

pressed Sparse Row (CSR) and Blocked Compressed Sparse
Row (BCSR). Only square BCSR was explored, and only
2x2 BCSR numbers will be presented here. Future Cell
SpMV work will examine the entire BCSR space. Because
of the quadword nature of the SPEs, all rows within a CSR
tile are padded to a multiple of 4. This greatly simplifies
the programming model at the expense of increasing mem-
ory traffic. Note that this is very different than 1x4 BCSR..

To perform a stanza gather operation the Cell utilizes the
MFC “get list” command, where a list of addresses/lengths
is created in local store. The MFC then gathers these stan-
zas from the global store and packs them into the local store.
It is possible to make every stanza a single quadword, how-
ever, without an accurate performance model of the MFC
“get list” command, one must resort to tiling to provide
a reasonable estimate for performance. For simplicity all
benchmarks were run using square tiles. The data structure
required to store the entire matrix is a 2D array of tiles,
where each block stores its nonzeros and row pointers as if
it were an entire matrix. We chose not to buffer the source
and destination vector tiles as this would result in a smaller
block size. These tradeoffs will be examined in future work.
Collectively the blocks are chosen to be no larger than ˜36K
words in SP (half that in DP).

The inner loop of CSR SpMV either requires significant
software pipelining, hefty loop unrolling, or an approach al-
gorithmically analogous to a segmented scan [1]. As there
are no conditional stores in the SPE assembly language, we
chose to partially implement a segmented scan, where the
gather operations are decoupled from the dot products. This
decoupled gather operation can be unrolled and software
pipelined, thereby completing in close to three cycles per
element (the ISA is not particularly gather friendly). It is
important to note that since the local store is not a write
back cache, it is possible to overwrite its contents without
fear of consuming DRAM bandwidth or corrupting the ac-
tual arrays.

As the nonzeros are stored contiguously in arrays, it is



# Name N NNZ Comments

15 Vavasis 40K 1.6M 2D PDE Problem
17 FEM 22K 1M Fluid Mechanics Problem
18 Memory 17K 125K MotorolaMemory Circuit
36 CFD 75K 325K Navier-Stokes, viscous flow

06 FEM Crystal 14K 490K FEM stiffness matrix
09 3D Tube 45K 1.6M 3D pressure Tube
25 Portfolio 74K 335K Financial Portfolio
27 NASA 36K 180K PWT NASA Matrix
28 Vibroacoustic 12K 177K Flexible box structure
40 Linear Prog. 31K 1M AAT

— 7pt 64 256K 1.8M 643 7pt stencil

Table 3: Suite of matrices used to evaluate SpMV
performance. Matrix numbers as defined in the
SPARSITY suite are shown in the first column.

straightforward to stream them in via DMA. Here, unlike
the source and destination vectors, it is essential to dou-
ble buffer in order to maximize the SPEs computational
throughput. Using buffers of 16KB for SP allows for 2K
values and 2K indices for CSR, and 1K tiles for 2x2 BCSR.
Note that for each phase — loading nonzeros and indices
— there is the omnipresent 1000 cycle DMA latency over-
head in addition to the startup and finalize penalties (as in
traditional pipelining).

To partition the work among the SPEs, we implemented
a cooperative blocking model. By forcing all SPEs to work
on the same block, it is possible to broadcast the blocked
source vector and row pointers to minimize memory traffic.
One approach, referred to as PrivateY, was to divide work
among SPEs within a block by distributing the nonzeros
as evenly as possible. This strategy necessitates that each
SPE contains a private copy of the destination vector, and
requires an inter-SPE reduction at the end of each blocked
row. The alternate method, referred to as PartitionedY,
partitions the destination vector evenly among the SPEs.
However there is no longer any guarantee that the SPEs’
computations will remain balanced, causing the execution
time of the entire tile to be limited by the most heavily
loaded SPE. Thus for load balanced blocks, the PartitionedY
approach is generally advantageous; however, for matrices
exhibiting irregular (uneven) nonzero patterns, we expect
higher performance using PrivateY.

Note that there is a potential performance benefit by writ-
ing a kernel specifically optimized for symmetric matrices.
For these types of matrices, the number of operations can
effectively double relative to the memory traffic. However,
the algorithm must block two tiles at a time — thus the sym-
metric matrix kernel divides memory allocated for blocking
the vector evenly among the two submatrices, and performs
a dot product and SAXPY for each row in the lower triangle.

7.2 Evaluation Matrices
In order to effectively evaluate SpMV performance, we ex-

amine a synthetic stencil matrix, as well as ten real matrices
used in numerical calculations from the BeBop SPARSITY
suite [11, 31] (four nonsymmetric and six symmetric). Ta-
ble 3 presents an overview of the evaluated matrices.

7.3 Single Precision SpMV Results
Single and double precision tuned SpMV results for the

SPARSITY matrices are show in Tables 4 and 5. Surpris-
ingly, given Cell’s inherent SpMV limitations, the SPAR-
SITY nonsymmetric matrices average over 4 Gflop/s, while
the symmetric matrices average nearly 8 Gflop/s. Unfortu-
nately, many of these matrices are so small that they utilize
only a fraction of the default tile size. Unlike the synthetic
matrices, the real matrices, which contain dense sub-blocks,
can exploit BCSR without unnecessarily wasting memory
bandwidth on zeros. As memory traffic is key, storing BCSR
blocks in a compressed format (the zeros are neither stored
nor loaded) would allow for significantly higher performance
if there is sufficient support within the ISA to either decom-
press these blocks on the fly, or compute on compressed
blocks. This is an area of future research.

Overall results show that the PrivateY approach is gen-
erally a superior partitioning strategy compared with Parti-
tionedY. In most cases, the matrices are sufficiently unbal-
anced that the uniform partitioning of the nonzeros coupled
with a reduction requires less time than the performing a
load imbalanced calculation.

When using the PartionedY approach, the symmetric ker-
nel is extremely unbalanced for blocks along the diagonal.
Thus, for matrices approximately the size of a single block,
the imbalance between SPEs can severely impair the perfor-
mance — even if the matrix is uniform. In fact, symmetric
optimizations show only about 50% performance improve-
ment when running the nonsymmetric kernel on the sym-
metric matrices.

Once again DMA latency plays a relatively small role in
this algorithm. In fact, reducing the DMA latency by a
factor of ten results in only a 5% increase in performance.
This is actually a good result. It means than the memory
bandwidth is highly utilized and the majority of bus cycles
are used for transferring data rather than stalls.

On the whole, clock frequency also plays a small part in
the overall performance. Solely increasing the clock fre-
quency by a factor of 2 (to 6.4GHz) provides only a 1%
increase in performance on the SPARSITY nonsymmetric
matrix suite. Similarly, cutting the frequency in half (to
1.6GHz) results in only a 20% decrease in performance. Sim-
ply put, for the common case, more time is used in trans-
ferring nonzeros and the vectors rather than computing on
them.

7.4 Double Precision SpMV Results
Results from our performance estimator show that single

precision SPMV is almost twice as fast as double precision,
even though the nonzero memory traffic only increases by
50%. This discrepancy is due to the reduction in the number
of values contained in a tile, where twice as many blocked
rows are present. For example, when using 16K2 SP tiles on
a 128K2 matrix, the 512KB source vector must be loaded 8
times. However, in DP, the tiles are only 8K2 — causing the
1MB source vector to be loaded 16 times, and thus resulting
in a much higher volume of memory traffic. Future work
will investigate caching mega blocks across SPEs to reduce
total memory traffic.

7.5 Performance Comparison
Table 4 compares Cell’s estimated performance (the best

partitioning and blocking combination) for SpMV with re-



SPARSITY nonsymmetric matrix suite
Double Precision (Gflop/s) Single Precision (Gflop/s)

Matrix CellF SS Cellpm
+ Cellpm X1E AMD64 IA64 Cellpm AMD64 IA64

Vavasis 3.79 3.17 3.06 0.84 0.44 0.46 6.06 0.70 0.49
FEM 4.28 3.44 3.39 1.55 0.42 0.49 5.14 0.59 0.62
Mem 2.21 1.69 1.46 0.57 0.30 0.27 2.79 0.45 0.31
CFD 1.87 1.52 1.44 1.61 0.28 0.21 2.33 0.38 0.23

Average 3.04 2.46 2.34 1.14 0.36 0.36 4.08 0.53 0.41

SPARSITY symmetric matrix suite
Double Precision (Gflop/s) Single Precision (Gflop/s)

Matrix CellF SS Cellpm
+ Cellpm X1E AMD64 IA64 Cellpm AMD64 IA64

FEM — 6.79 6.32 3.12 0.93 1.14 12.37 1.46 1.37
3D Tube — 6.48 6.06 2.62 0.86 1.16 11.66 1.36 1.31
Portfolio — 1.83 1.60 2.99 0.37 0.24 3.26 0.42 0.32
NASA — 1.92 1.66 3.30 0.42 0.32 3.17 0.46 0.40
Vibro — 3.90 3.47 2.54 0.57 0.56 7.08 0.56 0.64
LP — 5.17 4.87 1.27 0.47 0.63 8.54 0.55 0.92

Average — 4.35 4.00 2.64 0.60 0.67 7.68 0.80 0.83

Synthetic Matrices
Double Precision (Gflop/s) Single Precision (Gflop/s)

Matrix CellF SS Cellpm
+ Cellpm X1E AMD64 IA64 Cellpm AMD64 IA64

7pt 64 Stencil 2.20 1.44 1.29 — 0.30 0.29 2.61 0.51 0.32

Table 4: SpMV performance in single and double precision on the SPARSITY (top) nonsymmetric and
(bottom) symmetric matrix suites. Note: CellF SS represents the actual implementation and runs on the
cycle accurate full system simulator

sults from the Itanium2 and Opteron using SPARSITY,
a highly tuned sparse matrix numerical library, on non-
symmetric (top) and symmetric matrix suites. X1E results
where gathered using a high-performance X1-specific SpMV
implementation [6].

Considering that the Itanium2 and Opteron each have a
6.4GB/s bus compared to the Cell’s 25.6GB/s DRAM band-
width — one may expect that a memory bound application
such as SpMV would perform only four times better on the
Cell. Nonetheless, on average, Cellpm is more than 6x faster
in DP and 10x faster in SP. This is because in order to
achieve maximum performance, the Itanium2 must rely on
the BCSR storage format, and thus waste memory band-
width loading unnecessary zeros. However, the Cell’s high
FLOP to byte ratio ensures that the regularity of BCSR is
unnecessary allowing it to avoid loading many of the super-
fluous zeros. For example, in matrix #17, Cell uses more
than 50% of its bandwidth loading just the DP nonzero val-
ues, while the Itanium2 utilizes only 33% of its bandwidth.
The rest of Itanium2’s bandwidth is used for zeros and meta
data. It should be noted that where simulations on Cell in-
volve a cold start to the local store, the Itanium2’s have the
additional advantage of a warm cache.

Cell’s use of on-chip memory as a buffer is advantageous in
both power and area compared with a traditional cache. In
fact, Cell is 20 times more power efficient than the Itanium2
and 15 times more efficient than the Opteron for SpMV. For
a memory bound application such as this, multicore com-
modity processors will see little performance improvement
unless they also scale memory bandwidth.

Comparing results with an X1E MSP is far more diffi-
cult. For unsymmetric matrices, the Cellpm performance on

average is twice that of the X1E. For symmetric matrices,
Cellpm performs somewhere between half and triple the per-
formance of the X1E, but on average is 50% faster. The fact
that the X1E consumes about three times the power of Cell
guarantees Cell, in double precision, is at least as power ef-
ficient as the X1E

7.6 Model Validation
Some might claim that matrix-matrix multiplication per-

formance can be easily predictable. Most, however, would
agree that SpMV is very difficult to predict. As seen in Ta-
ble 4, we tested our implementation of the DP SpMV kernel
on the cycle accurate IBM full system simulator, referred
to as CellF SS . The actual implementation makes dynamic
blocking and partitioning decisions at run time, based on
the lessons learned while exploring optimization strategies
for the performance model; however, the current version but
does not include the BCSR approach, and only pads rows
to the nearest even number.

The cycle accurate simulations with a superior implemen-
tation proved to be about 30% faster than the initial per-
formance estimate, and averages impressive results of more
than 3 Gflop/s for nonsymmetric matrices. The 30% dis-
crepancy disappears when static partitioning and blocking
strategies used. We can clearly see how the actual implemen-
tation’s run time search for structure boosted performance
of the heat equation from about 1.3 Gflop/s to 2.2 Gflop/s —
achieving a 7x speedup over the Itanium2. CellF SS , for dou-
ble precision nonsymmetric matrices, is more than 8 times
faster than the Itanium2, and 27 times more power efficient.
These results confirm our performance model’s predictive



Xnext[i, j, k, t+ 1] = X[i− 1, j, k, t]+ X[i+ 1, j, k, t]+

X[i, j− 1, k, t]+ X[i, j+ 1, k, t]+

X[i, j, k− 1, t]+ X[i, j, k+ 1, t]+

αX[i, j, k, t]

X[i, j, k, t+ 1] =
dt2

dx2
(X[i− 1, j, k, t]+ X[i+ 1, j, k, t])+

dt2

dy2
(X[i, j− 1, k, t]+ X[i, j+ 1, k, t])+

dt2

dz2
(X[i, j, k− 1, t]+ X[i, j, k+ 1, t])+

αX[i, j, k, t]− X[i, j, k, t− 1]

Figure 2: Stencil kernels used in evaluation. Top:
Chombo heattut equation requires only the previ-
ous time step. Bottom: Cactus WaveToy equation
requires both two previous time steps.

abilities on complex kernels, and clearly demonstrate Cell’s
performance superiority when compared with leading mi-
croarchitectural approaches.

8. STENCIL COMPUTATIONS
Stencil-based computations on regular grids are at the

core of a wide range of important scientific applications. In
these applications, each point in a multidimensional grid is
updated with contributions from a subset of its neighbors.
The numerical operations are then used to build solvers that
range from simple Jacobi iterations to complex multigrid
and block structured adaptive methods.

In this work we examine two flavors of stencil computa-
tions derived from the numerical kernels of the Chombo [5]
and Cactus [2] toolkits. Chombo is a framework for comput-
ing solutions of partial differential equations (PDEs) using
finite difference methods on adaptively refined meshes. Here
we examine a stencil computation based on Chombo’s demo
application, heattut, which solves a simple heat equation
without adaptivity. Cactus is modular open source frame-
work for computational science, successfully used in many
areas of astrophysics. Our work examines the stencil kernel
of the Cactus demo, WaveToy, which solves a 3D hyper-
bolic PDE by finite differencing. The heattut and WaveToy
equations are shown in Figure 2.

Notice that both kernels solve 7 point stencils in 3D for
each point. However, the heattut equation only utilizes val-
ues from the previous time step, while WaveToy requires val-
ues from the two previous timesteps.. Additionally, Wave-
Toy has a higher computational intensity, and can more
readily exploit the FMA pipeline.

8.1 Algorithmic Considerations
The algorithm used on Cell is virtually identical to that

used on traditional architectures except that the ISA forces
main memory loads and stores to be explicit, rather than
caused by cache misses and evictions. The basic algorith-
mic approach to update the 3D cubic data array is to sweep
across the domain, updating one plane at a time. Since a
stencil requires both the next and previous plane, a mini-
mum of 4 planes must be present in the local stores: (z-1,t),
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Figure 3: Flow Diagram for Heat equation flow di-
agram. Left: Queues implemented within each SPE
perform only one time step. Right: Time skewing
version requires an additional circular queue to hold
intermediate results.

(z,t), (z+1,t), and (z,t+1). Additionally, bus utilization can
be maximized by double buffering the previous output plane
(z-1,t+1) with the next input plane (z+2,t).

In order to parallelize across SPEs, each plane of the 3D
domain is partitioned into eight overlapping blocks. Due
to the finite size of the local store memory, a straightfor-
ward stencil calculation is limited to planes of 2562 elements
plus ghost regions. Thus each SPE updates the core 256x32
points from a 258x34 slab (as slabs also contain ghost re-
gions).

To improve performance of stencil computations on cache-
based architectures, previous research has shown multiple
time steps can be combined to increase performance [13,
21, 32]. This concept of time skewing can also be effec-
tively leveraged in our Cell implementation. By keeping
multiple planes from multiple time steps in the SPE simul-
taneously, it is possible to double or triple the number of
stencils performed with almost no increase in memory traf-
fic; thus increasing computational intensity and improving
overall performance. Figure 3 details a flow diagram for the
heat equation, showing both the simple and time skewed
implementations.

Note that the neighbor communication required by sten-
cils is not well suited for the aligned quadword load require-
ments of the SPE ISA - i.e. unaligned loads must be emu-
lated with permute instructions. In fact, for SP stencils with
extensive unrolling, after memory bandwidth, the permute
datapath is the limiting factor in performance — not the
FPU. This lack of support for unaligned accesses highlights
a potential bottleneck of the Cell architecture; however we
can partially obviate this problem for the stencil kernel via
data padding.

8.2 Stencil Kernel Results
The performance estimation for the heattut and Wave-

Toy stencil kernels is shown in Table 5. Results show that
as the number of time steps increases, a corresponding de-
crease in the grid size is required due to the limited memory
footprint of the local store. In SP, the heat equation on the
Cellpm is effectively computationally bound with two steps
of time skewing, resulting in over 41 Gflop/s. More specif-
ically, the permute unit becomes fully utilized as discussed



Double Precision (Gflop/s)
CellF SS Cellpm

+ Cellpm
+ Cellpm X1E AMD64 IA64

Stencil (2 step)
Heat 7.25 21.1 10.6 8.2 3.91 0.57 1.19

WaveToy 9.68 16.7 11.1 10.8 4.99 0.68 2.05

Single Precision (Gflop/s)
CellF SS Cellpm Cellpm X1E AMD64 IA64

Stencil (4 step) (2 step)
Heat 65.8 41.9 21.2 3.26 1.07 1.97

WaveToy — 33.4 22.3 5.13 1.53 3.11

Table 5: Performance for the Heat equation and
WaveToy stencils. X1E and Itanium2 experiments
use 2563 grids. The Opteron uses a 1283. Cell uses
the largest grid that would fit within the local stores.
The (n steps) versions denote a time skewed version
where n time steps are computed.

in Section 8.1. In DP, however, the heat equation is truly
computationally bound for only a single time step, achieving
8.2 Gflop/s. Analysis also shows that in the Cell+ approach,
the heat equation is memory bound when using a single time
step attaining 10.6 Gflop/s; for time skewing, performance
of Cell+ DP jumps to over 21 Gflops/s.

We believe the temporal recurrence in the CACTUS Wave-
Toy example will allow more time skewing in single precision
at the expense of far more complicated code, and will be the
subject of future investigation.

8.3 Performance Comparison
Table 5 presents a performance comparison of the stencil

computations across our evaluated set of leading processors.
Note that stencil performance has been optimized for the
cache-based platforms as described in [15].

In single precision, for this memory bound computation,
even without time skewing, Cellpm achieves 6.5x, 11x, and
20x speedup compared with the X1E, the Itanium2 and the
Opteron respectively. Recall that the Cell has only four
times the memory bandwidth the scalar machines, and 75%
the bandwidth of the X1E indicating that Cells potential to
perform this class of computations in a much more efficient
manner is due to the advantages of software controlled mem-
ory for algorithms exhibiting predictable memory accesses.
In double precision, with 1/14th the floating point through-
put, Cellpm achieves a 2x, 7x, and 14x speedup compared to
the X1E, the Itanium2, and the Opteron for the heat equa-
tion — a truly impressive result. Additionally, unlike the
Opteron and Itanium2, simple time skewing has the poten-
tial to at least double the performance in either SP (either
version of Cell) or in DP on the Cell+ variant.

Finally, recall that in Section 7 we examined Cell SpMV
performance using 7-point stencil matrices. We can now
compare those results with the structured grid approach pre-
sented here, as the numerical computations are equivalent
in both cases. Results show that for two time step calcula-
tions, the single precision structured grid approach achieves
a 23x advantage compared with the sparse matrix method.
This impressive speedup is attained through the regularity of
memory accesses, reduction of memory traffic (constants are
encoded in the equation rather than the matrix), the ability
to time skew (increased computational intensity), and that

stencils on a structured grid dont require multiplications by
1.0 like a sparse matrix would. For double precision, the
stencil algorithm advantage is diminished to approximately
12x, due mainly to the lack of time skewing.

8.4 Model Validation
As with SpMV, we implemented an actual double preci-

sion kernel on the full system simulator, with CellF SS results
shown in Table 5. At first, we were surprised that measured
performance fell short of our prediction by 13%. However,
upon closer examination it was discovered that the actual
Cell implementation prohibits dual issuing of DP instruc-
tions with loads or permutes, even though it allows SP with
loads or permutes to be dual issued. Thus for kernels with
streaming behavior, it is realistic to assume that one double
precision SIMD instruction can be executed every 8 cycles
— instead of every 7 as we had predicted previously. This
discrepancy results in a 14% architectural performance re-
duction, which corresponding very well to the 13% differ-
ence observed in Table 5 between the predicted (Cellpm)
and simulated (CellF SS) DP data.

Nonetheless, the actual DP CellF SS implementation of
our evaluated stencil kernel is about 13x faster, and nearly
30x more power efficient than the Opteron. We also devel-
oped a SP version of the heat equation that allowed four
time-skewed stencil steps. (Our original performance es-
timation assumed one or two time steps.) Results show
spectacular SP CellF SS performance of nearly 66 Gflop/s
— more than 60x faster and 136x power efficient compared
with the Opteron, even though Cell has only four times the
bandwidth and 20 times the single precision throughput.

9. FAST FOURIER TRANSFORMS
The FFT presents us with an interesting challenge: its

computational intensity is much less than matrix-matrix
multiplication and standard algorithms require a non-trivial
amount of data movement. Extensive work has been per-
formed on optimizing this kernel for both vector [24] and
cache-based [7] machines. In addition, implementations for
varying precisions appear in many embedded devices using
both general and special purpose hardware. In this section
we evaluate the implementation of a standard FFT algo-
rithm on the Cell processor.

9.1 Methods
We examine both the 1D FFT cooperatively executed

across the SPEs, and a 2D FFT whose 1D FFTs are each
run on a single SPE. In all cases the data appears in a sin-
gle array of complex numbers. Internally (within the local
stores) the data is unpacked into separate arrays, and a table
lookup is used for the roots of unity so that no runtime com-
putation of roots is required. As such, our results include
the time needed to load this table. Additionally, all results
are presented to the FFT algorithm and returned in natural
order (i.e. a bit reversal was required to unwind the permu-
tation process in all cases). Note that these requirements
have the potential to severely impact performance.

For simplicity we evaluated a naive FFT algorithm (no
double buffering and with barriers around computational
segments) for the single 1D FFT. The data blocks are dis-
tributed cyclically to SPEs, 3 stages of local work are per-
formed, the data is transposed (basically the reverse of the



cyclic allocation), and then 9 to 13 stages of local compu-
tation is performed (depending on the FFT size). At that
point the indices of the data on chip are bit-reversed to un-
wind the permutation process and the naturally ordered re-
sult copied back into main memory. Once again, we presume
a large DMA initiation overhead of 1000 cycles. However, a
Cell implementation where the DMA initiation overhead is
smaller, would allow the possibility of much larger FFT cal-
culations (including out of core FFTs) using smaller block
transfers, with little or no slowdown using double buffering
to hide the DMA latency.

Before exploring the 2D FFT, we briefly discuss simul-
taneous FFTs. For sufficiently small FFTs (<4K points in
SP) it is possible to both double buffer and round robin al-
locate a large number of independent FFTs to the 8 SPEs.
Although there is lower computational intensity, the sheer
parallelism, and double buffering allow for extremely high
performance (up to 76 Gflop/s).

Simultaneous FFTs form the core of the 2D FFT. In order
to ensure long DMAs, and thus validate our assumptions on
effective memory bandwidth, we adopted an approach that
requires two full element transposes. First, N 1D N-point
FFTs are performed for the rows storing the data back to
DRAM. Second, the data stored in DRAM is transposed
(columns become rows) and stored back to DRAM. Third
the 1D FFTs are performed on the columns, whose elements
are now sequential (because of the transpose). Finally a sec-
ond transpose is applied to the data to return it to its origi-
nal layout. Instead of performing an N point bit reversal for
every FFT, entire transformed rows (not the elements of the
rows) are stored in bit-reversed order (in effect, bit reversing
the elements of the columns). After the first transpose, a
decimation in frequency FFT is applied to the columns. The
columns are stored back in bit-reversed order — in doing so,
the row elements are bit reversed. With a final transpose,
the data is stored back to memory in natural order and lay-
out in less time.

9.2 Single Precision FFT Performance
Table 6 presents performance results for the Cell 1D and

2D FFT. For the 1D case, more than half of the total time is
spent just loading and storing points and roots of unity from
DRAM. If completely memory bound, peak performance is
approximately (25.6GB/s/8Bytes) ∗ 5NlogN/3N cycles or
approximately 5.3logN Gflop/s. This means performance is
limited to 64 Gflop/s for a 4K point SP FFT regardless of
CPU frequency. A clear area for future exploration is hiding
computation within the communication and the minimiza-
tion of the overhead involved with the loading of the roots
of unity.

Unfortunately the two full element transposes, used in
the 2D FFT to guarantee long sequential accesses, consume
nearly 50% of the time. Thus, although 8K simultaneous
4K point FFTs achieve 76 Gflop/s (after optimizing away
the loading of roots of unity), a 4K2 2D FFT only reaches
46 Gflop/s — an impressive figure nonetheless. Without the
bit reversal approach, the performance would have further
dropped to about 40 Gflop/s. The smaller FFT’s shown in
the table show even poorer performance.

9.3 Double Precision FFT Performance
When DP is employed, the balance between memory and

computation is changed by a factor of 7. This pushes a

Double Precision (Gflop/s)
N

Cellpm
+ Cellpm X1E∗ AMD64 IA64

4K 12.6 5.6 2.92 1.88 3.51
1D 16K 14.2 6.1 6.13 1.34 1.88

64K — — 7.56 0.90 1.57
1K2 15.9 6.6 6.99 1.19 0.52

2D
2K2 16.5 6.7 7.10 0.19 0.11

Single Precision (Gflop/s)
N

Cellpm
+ Cellpm X1E∗ AMD64 IA64

4K — 29.9 3.11 4.24 1.68
1D 16K — 37.4 7.48 2.24 1.75

64K — 41.8 11.2 1.81 1.48
1K2 — 35.9 7.59 2.30 0.69

2D
2K2 — 40.5 8.27 0.34 0.15

Table 6: Performance of 1D and 2D FFT in DP (top)
and SP (bottom). For large FFTs, Cell is more than
10 times faster in SP than either the Opteron or
Itanium2. The Gflop/s number is calculated based
on a naive radix-2 FFT algorithm. For 2D FFTs the
naive algorithm computes 2N N-point FFTs.

slightly memory bound application strongly into the com-
putationally bound domain. The SP simultaneous FFT is
10 times faster than the DP version. On the upside, the
transposes required in the 2D FFT are now less than 20% of
the total time, compared with 50% for the SP case. Cellpm

+

finds a middle ground between the 4x reduction in computa-
tional throughput and the 2x increase in memory traffic —
increasing performance by almost 2.5x compared with the
Cell for all problem sizes.

9.4 Performance Comparison
The peak Cell FFT performance is compared to a number

of other processors in the Table 6. These results are con-
servative given the naive 1D FFT implementation we used
on Cell whereas the other systems in the comparison used
highly tuned FFTW [7] or vendor-tuned FFT implementa-
tions [25]. Nonetheless, in DP, Cellpm is at least 12x faster
than the Itanium2 for a 1D FFT, and Cellpm

+ could be as
much as 30x faster for a large 2D FFT. Cell+ more than
doubles the DP FFT performance of Cell for all problem
sizes. Cell performance is nearly at parity with the X1E in
double precision; however, we believe considerable headroom
remains for more sophisticated Cell FFT implementations.
In single precision, Cell is unparalleled.

Note that FFT performance on Cell improves as the num-
ber of points increases, so long as the points fit within the
local store. In comparison, the performance on cache-based
machines typically reach peak at a problem size that is far
smaller than the on-chip cache-size, and then drops precip-
itously once the associativity of the cache is exhausted and
cache lines start getting evicted due to aliasing. Elimination
of cache evictions requires extensive algorithmic changes for
the power-of-two problem sizes required by the FFT algo-
rithm, but such evictions will not occur on Cells software-
managed local store. Furthermore, we believe that even for
problems that are larger than local store, 1D FFTs will con-

∗X1E FFT numbers provided by Cray’s Bracy Elton and
Adrian Tate.



tinue to scale much better on Cell than typical cache-based
superscalar processors with set-associative caches since local
store provides all of the benefits as a fully associative cache.
The FFT performance clearly underscores the advantages
of software-controlled three-level memory architecture over
conventional cache-based architectures.

10. CONCLUSIONS AND FUTURE WORK
The Cell processor offers an innovative architectural ap-

proach that will be produced in large enough volumes to be
cost-competitive with commodity CPUs. This work presents
the broadest quantitative study Cell’s performance on scien-
tific kernels and directly compares its performance to tuned
kernels running on leading superscalar (Opteron), VLIW
(Itanium2), and vector (X1E) architectures. We developed
an analytic framework to predict Cell performance on dense
and sparse matrix operations, stencil computations, and 1D
and 2D FFTs. Using this approach allowed us to explore
numerous algorithmic approaches without the effort of im-
plementing each variation. We believe this analytical model
is especially important given the relatively immature soft-
ware environment makes Cell time-consuming to program
currently; the model proves to be quite accurate, because
the programmer has explicit control over parallelism and
features of the memory system.

Furthermore, we propose Cell+, a modest architectural
variant to the Cell architecture designed to improve DP be-
havior. Overall results demonstrate the tremendous poten-
tial of the Cell architecture for scientific computations in
terms of both raw DP and SP performance and power ef-
ficiency. In addition, we show that Cell+ significantly out-
performs Cell for most of our evaluated DP kernels, while
requiring minimal microarchitectural modifications to the
existing design.

Analysis shows that Cell’s three level software-controlled
memory architecture, which completely decouples main mem-
ory load/store from computation, provides several advan-
tages over mainstream cache-based architectures. First, ker-
nel performance can be extremely predictable as the load
time from local store is constant. Second, long block trans-
fers can achieve a much higher percentage of memory band-
width than individual loads in much the same way a hard-
ware stream prefetch engine, once engaged, can fully con-
sume memory bandwidth. Finally, for predictable memory
access patterns, communication and computation can be
overlapped more effectively than conventional cache-based
approaches. Increasing the size of the local store or reducing
the DMA startup overhead on future Cell implementations
may further enhance the scheduling efficiency by enabling
more effective overlap of communication and computation.

There are also disadvantages to the Cell architecture for
kernels such as SpMV. With its lack of unaligned load sup-
port, Cell must issue additional instructions simply to per-
mute data, yet still manages to outperform conventional
scalar processor architectures. Even memory bandwidth
may be wasted since SpMV is constrained to use tiling to
remove the indirectly indexed accesses to the source vec-
tor. The ability, however, to perform a decoupled gather,
to stream nonzeros, and Cell’s low functional unit latency,
tends to hide this deficiency. Additionally, we see stencil
computations as an example of an algorithm that is heav-
ily influenced by the performance of the permute pipeline.
Here, the lack of support for an unaligned load instruction

Speedup vs. Power Efficiency vs.
Cell+

X1E AMD64 IA64 X1E AMD64 IA64
GEMM 3x 12.7x 9.5x 9x 28.3x 30.9x
SpMV >2.7x >8.4x >8.4x >8.0x >18.7x >27.3x
Stencil 5.4x 37.0x 17.7x 16.2x 82.4x 57.5x

1D FFT 2.3x 10.6x 7.6x 6.9x 23.6x 24.7x
2D FFT 2.3x 13.4x 30.6x 6.9x 29.8x 99.5x

Speedup vs. Power Efficiency vs.
Cell

X1E AMD64 IA64 X1E AMD64 IA64
GEMM 0.8x 3.7x 2.7x 2.4x 8.2x 8.78x
SpMV 2.7x 8.4x 8.4x 8.0x 18.7x 27.3x
Stencil 1.9x 12.7x 6.1x 5.7x 28.3x 19.8x

1D FFT 1.0x 4.6x 3.2x 3.0x 10.2x 10.4x
2D FFT 0.9x 5.5x 12.7x 2.7x 12.2x 41.3x

Table 7: Double precision speedup and increase in
power efficiency of (Top) Cell+ and (Bottom) Cell,
relative to the X1E, Opteron, and Itanium2 for our
evaluated suite of scientific kernels. Results show an
impressive improvement in performance and power
efficiency.

is a more significant performance bottleneck than either the
SP execution rate or the memory bandwidth.

For dense matrix operations, it is essential to maximize
computational intensity and thereby fully utilize the local
store. However, if not done properly, the resulting TLB
misses adversely affect performance. For example, in the
GEMM kernel we observe that the BDL data storage format,
either created on the fly or before hand, can ensure that
TLB misses remain a small issue even as on-chip memories
increase in size.

Table 7 compares the advantage of Cell and Cell+ based
on the better of performance model or actual implemen-
tation (where available) in terms of DP performance and
power efficiency for our suite of evaluated kernels and archi-
tectural platforms. Observe that Cell+ has the potential to
greatly increase the already impressive performance charac-
teristics of Cell.

By using the insight gained in the development of our es-
timation model, we developed an optimized SpMV version
that outperformed our initial predictions by 25% – 70%. If a
full system simulator could model the modest improvements
of our Cell+ variant, we feel confident that we could demon-
strate comparable improvements to DP performance as well.
We also note that DP stencil performance fell short of our
model by 13% due to previously unknown microarchitectural
limitations. However, time skewing showed a huge benefit
in SP and we believe a similar benefit would be present in
DP on Cell+ variant.

It is important to consider these performance differences
in the context of increasingly prevalent multi-core commod-
ity processors. The first generation of this technology will
instantiate at most two cores per chip, and thus will deliver
less than twice the performance of today’s existing archi-
tectures. This factor of 2x is trivial compared with Cell+’s
potential of 10-20x improvement.

While peak Cell DP performance is impressive relative to
its commodity peers, a fully utilizable pipelined DP floating
point unit would boost Cell (i.e. Cell+) performance and
efficiency significantly.
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