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Cell Architecture
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Cell Architecture
• 3.2GHz, 9 Core SMP

– One core is a conventional cache based PPC
– The other 8 are local memory based SIMD processors (SPEs)

• 25.6GB/s memory bandwidth (128b @ 1.6GHz) to XDR
• 2 chip (16 SPE) SMP blades
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Memory Architectures
Conventional
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SPE notes
• SIMD
• Limited dual issue

– 1 float/ALU + 1 load/store/permute/etc… per cycle
• 4 FMA single precision datapaths, 6 cycle latency
• 1 FMA double precision datapath, 13 cycle latency
• Double precision instructions are not dual issued, and will stall all

subsequent instruction issues by 7 cycles.
• 128b aligned loads/stores (local store to/from register file)

– Must rotate to access unaligned data
– Must permute to operate on scalar granularities
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Cell Programming
• Modified SPMD (Single Program Multiple Data)

– Dual Program Multiple Data (control + computation)
– Data access similar to MPI, but data is shared like pthreads

• Power core is used to:
– Load/initialize data structures
– Spawn SPE threads
– Parallelize data structures
– Pass pointers to SPEs
– Synchronize SPE threads
– Communicate with other processors
– Perform other I/O operations
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Processors Evaluated
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Stencil Operations on
Structured Grids
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Stencil Operations
• Simple Example - The Heat Equation

– dT/dt = k∇2T
– Parabolic PDE on 3D discretized scalar domain

• Jacobi Style (read from current grid, write to next grid)
– 8 FLOPs per point, typically double precision
– Next[x,y,z] = Alpha*Current[x,y,z] +

Beta*( Current[x-1,y,z] + Current[x+1,y,z] +
Current[x,y-1,z] + Current[x,y+1,z] +
Current[x,y,z-1] + Current[x,y,z+1] )

– Doesn’t exploit the FMA pipeline well
– Basically 6 streams presented to the memory subsystem

• Explicit ghost zones bound grid

[x,y,z] [x+1,y,z]

[x,y-1,z]

[x,y,z-1]
[x,y+1,z]

[x,y,z+1]

[x-1,y,z]
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Optimization - Planes
• Naïve approach (cacheless vector machine) is to load 5

streams and store one.
• This is 8 flops per 48 bytes

– memory limits performance to 4.2 GFLOP/s
• A better approach is to make each DMA the size of a plane

– cache the 3 most recent planes (z-1, z, z+1)
– there are only two streams (one load, one store)
– memory now limits performance to 12.8 GFLOP/s

• Still must compute on each plane after it is loaded
– e.g. forall Current_local[x,y] update Next_local[x,y]
– Note: computation can severely limit performance
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Optimization - Double Buffering
• Add a input stream buffer and and output stream buffer

(keep 6 planes in local store)
• Two phases (transfer & compute) are now overlapped
• Thus it is possible to hide the faster of DMA transfer time

and computation time
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Optimization - Cache Blocking
• Domains can be quite large (~1GB)
• A single plane, let alone 6, might not fit in the local store
• Partition domain into cache blocked slabs so that 6 cache

blocked planes can fit in the local store
• Partitioning in the Y dimension maintains good spatial and

temporal locality
• Has the added benefit that cache blocks are independent

and thus can be parallelized across multiple SPEs
• Memory efficiency can be diminished as an intra grid ghost

zone is implicitly created.
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• Instead of computing on pencils, compute on ribbons (4x2)
• Hides functional unit & local store latency
• Minimizes local store memory traffic
• Minimizes loop overhead

• May not be beneficial / noticeable for cache based machines

Optimization - Register Blocking
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Double Precision Results

• ~2563 problem
• Performance model matches well with hardware
• 5-9x performance of Opteron/Itanium/Power5
• X1E ran a slight variant (beta hard coded

 to be 1.0, not cache blocked)



16

Optimization - Temporal Blocking
• If the application allows it, perform block

the outer (temporal) loop
• Only appropriate on memory bound

implementations
– Improves computational intensity
– Cell SP or Cell with faster DP

• Simple approach
– Overlapping trapezoids in time-space plot
– Can be inefficient due to duplicated work
– If performing n steps, the local store must

hold 3(n+1) planes
• Time Skewing is algorithmically superior,

but harder to parallelize.
• Cache Oblivious is similar but

implemented recursively.

Time t
Time t+1

Time t+2
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Temporal Blocking Results

• Cell is computationally bound in double precision (no benefit in
temporal blocking, so only cache blocked shown)

• Cache machines show the average of 4 steps
of time skewing
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Temporal Blocking Results (2)

• Temporal blocking on Cell was implemented in
single precision (four step average)

• Others still use double precision
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Sparse Matrix-Vector
Multiplication
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Sparse Matrix Vector Multiplication
• Most of the matrix entries are zeros, thus the non zero

entries are sparsely distributed
• Dense methods compute on all the data, sparse

methods only compute the nonzeros (as only
they compute to the result)

• Can be used for unstructured grid problems
• Issues

– Like DGEMM, can exploit a FMA well
– Very low computational intensity

(1 FMA for every 12+ bytes)
– Non FP instructions can dominate
– Can be very irregular
– Row lengths can be unique and very short
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Compressed Sparse Row
• Compressed Sparse Row (CSR) is the standard format

– Array of nonzero values
– Array of corresponding column for each nonzero value
– Array of row starts containing index (in the above arrays) of

first nonzero in the row
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Optimization - Double Buffer Nonzeros
• Computation and Communication are approximately equally

expensive
• While operating on the current set of nonzeros, load the

next (~1K nonzero buffers)
• Need complex (thought) code to stop and restart a row

between buffers
• Can nearly double performance
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Optimization - SIMDization
• Row Padding

– Pad rows to the nearest multiple of 128b
– Might requires O(N) explicit zeros
– Loop overhead still present
– Generally works better in double precision

• BCSR
– Nonzeros are grouped into dense r x c blocks(sub matrices)
– O(nnz) explicit zeros are added
– Choose r&c so that it meshes well with 128b registers
– Performance can hurt especially in DP as computing on zeros

is very wasteful
– Can hide latency and amortize loop overhead
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Optimization - Cache Blocked Vectors
• Doubleword DMA gathers from DRAM can be expensive
• Cache block source and destination vectors
• Finite LS, so what’s the best aspect ratio?
• DMA large blocks into local store
• Gather operations into local store

– ISA vs. memory subsystem inefficiencies
– Exploits temporal and spatial locality within

the SPE
• In effect, the sparse matrix is explicitly blocked

into submatrices, and we can skip, or otherwise
optimize empty submatrices

• Indices are now relative to the cache block
– half words
– reduces memory traffic by 16%



25

Optimization - Load Balancing
• Potentially irregular problem
• Load imbalance can severely hurt performance
• Partitioning by rows is clearly insufficient
• Partitioning by nonzeros is inefficient when

the matrix has few but highly variable nonzeros
per row.

• Define a cost function of number of row starts
and number of nonzeros.

• Determine the parameters via static timing analysis or
tuning.
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Other Approaches

• BeBop / OSKI on the Itanium2 & Opteron
– uses BCSR
– auto tunes for optimal r x c blocking
– Cell implementation is similar

• Cray’s routines on the X1E
– Report best of CSRP, Segmented Scan &

Jagged Diagonal
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Benchmark Matrices

#15 - PDE

N=40K, NNZ=1.6M

#17 - FEM

N=22K, NNZ=1M

#18 - Circuit

N=17K, NNZ=125K

#36 - CFD

N=75K, NNZ=325K

#06 - FEM Crystal

N=14K, NNZ=490K

#09 - 3D Tube

N=45K, NNZ=1.6M

#25 - Financial

N=74K, NNZ=335K

#27 - NASA

N=36K, NNZ=180K

#28 - Vibroacoustic

N=12K, NNZ=177K

#40 - Linear Programming

N=31K, NNZ=1M
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Double Precision SpMV Performance

Notes:
• few nonzeros per row severely limited performance on CFD
• BCSR was clearly exploited on the first 2
• 3-8x faster than Opteron/Itanium
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Double Precision SpMV Performance (2)

Notes:
• few nonzeros per row (hurts a lot)
• Not structured as well as previous set
• 4-6x faster than Opteron/Itanium
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Double Precision SpMV Performance (3)

Notes:
• many nonzeros per row
• Load imbalance hurt cell’s performance by as much as 20%
• 5-7x faster than Opteron/Itanium
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Conclusions
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Conclusions
• Cell performance is far more predictable than conventional

OOO machines
• Even in double precision, it obtains much better

performance on a surprising variety of codes.
• Cell can eliminate unneeded memory traffic, hide memory

latency, and thus achieves a much higher percentage of
memory bandwidth.

• Instruction set can be very inefficient for poorly SIMDizable
or misaligned codes.

• Loop overheads can heavily dominate performance.

• Programming model could be streamlined
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